a Internationa

Innovating for your growth

September 2025

Annual Subscription: ₹800 Foreign USD 100

Inside ...

Editorial:

Shrimp Farmers Seek Govt help for Shrimp Exports. Electricity Tariff and reduce Soy Feed prices

Thanseer K R of Kerala declared winner of **MPEDA's National Skill** Olympiad on India's seafood exports ...

Technological advancements, industry growth & policy updates

Awareness Programme on "Aquaculture Insurance for Fish Farmers"

Tiger Shrimp -Brackishwater Finfish -Mangrove Polyculture...

42nd Edition

Aquaculture Expo 2025

Exhibition on Aquaculture Sector

19 - 20 November 2025

Venue: Hotel Mirasol Resort. Daman - Gujarat, India

For stalls booking Contact: Aqua International, Hyderabad, India.
Tel: 040 - 2330 3989, 96666 89554 E: aquacultureexpo.nrs@gmail.com

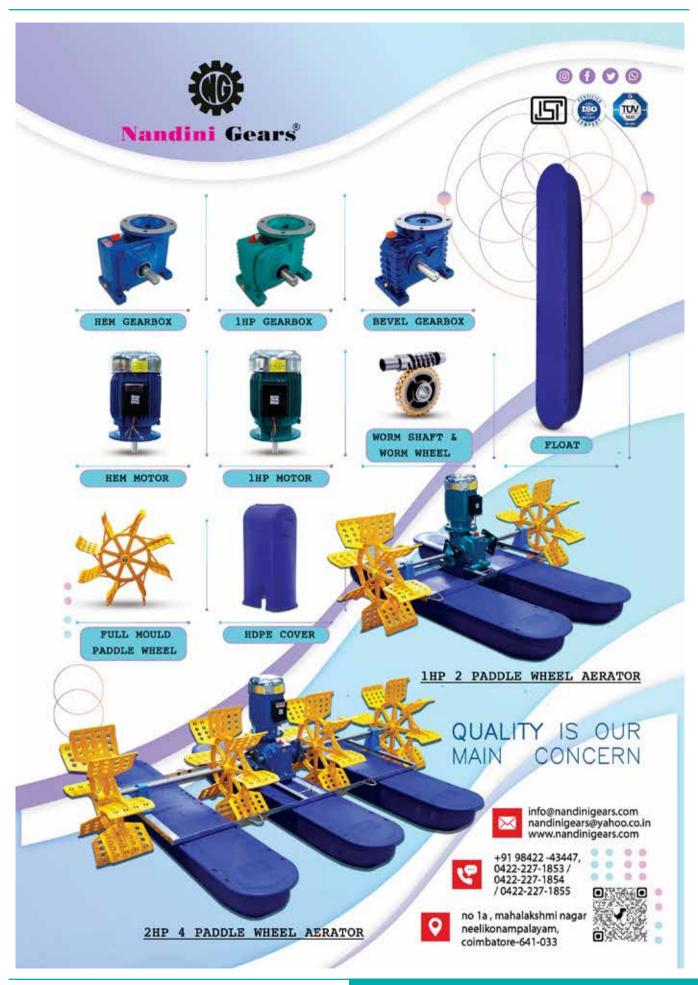
Corporate Office: The Waterbase Limited, Thapar House, 37 Montieth Road, Egmore, Chennai-600 008, Tamil Nadu, India, Ph.: +91 44 4566 1700, www.waterbase.india.com

Quality Inputs - Quality Management... Towards Sustainable Aquaculture!!

SRIBS BiotechniQs Private Limited

302, Wing-A, Cello Triumph, I.B.Patel Road, off Western Express Highway,
Goregaon East, Mumbai 400063, Maharashtra, India. \$\circ\$ +9122 26861441 / 26851442

SRIBS sustainability simplified®



••• expect only quality from us

The BEST You Can Get

"Satisfaction is a Rating Loyalty is a Brand"

"A Thankful Receiver Bears a Plentiful Harvest"

The Responsible Seafood Choice

CORPORATE OFFICE **GOLDEN MARINE HARVEST**

Near Valathammon Koil, Chettikuppam, Marakkanam District: Villupuram, Tamil Nadu, India

Chettikuppam, Marakkanam

GOLDEN MARINE HARVEST Unit II

Thoduvai Village Kooliyar Post, Thirumullaivasal, Sirkazhi Tk, Mayiladuthurai District: Tamil Nadu, India

GOLDEN WHITE PRAWNS

Near Valathamman Koil, Chettikuppam, Marakkanam District: Villupuram, Tamil Nadu, India

GUJART GOLDEN MARINE

Survey No-312 Velon - 362720

District: Gir-Somnath, Gujarat, India.

GOLDEN MARINE HARVEST Unit III

District: Villupuram, Tamil Nadu, India

GOLDEN MARINE HARVEST Unit IV

121, Mugaiyur Village, Cheyyur Taluk, Chengalpattu District, Tamil Nadu, India

GOLDEN MARINE HARVEST Unit V GOLDEN MARINE HARVEST Unit VI

Chettikuppam, Marakkanam District: Villupuram, Tamil Nady, India

Chettinogar, Marakkanam District: Villupuram, Tamil Hadu, India

GOLDEN MARINE HARVEST Unit VII

Atchikadu, Marakkanam District: Villupuram, Tomil Nadu, India

E-mail : info@goldenmarine.in Website : www.goldenmarine.in

Contact: +91 99944 35858

Golden Marine-Harvest GMH

Aqua Internation

English Monthly Magazine (Established in May 1993)

Volume 33 Number 5 September 2025

Editor & Publisher

M. A. Nazeer

Editorial & Business Office:

AQUA INTERNATIONAL

NRS Publications, BG-4, Venkataramana Apartments, 11-4-634, A.C.Guards, Hyderabad - 500 004, India. Tel: 040 - 2330 3989, 96666 89554 E-mail: info@aquainternational.in Website: www.aquainternational.com

Annual Subscription

India : Rs. 800 Foreign Countries: US \$ 100 or its equivalent.

Agua International will be sent to the subscribers in India by Book Post and to the foreign subscribers by AirMail.

Edited, printed, published and owned by M. A. Nazeer and published from BG-4, Venkataramana Apts., 11-4-634, A.C.Guards, Hyderabad - 500 004, India. Printed at Srinivasa Lithographics.

Registered with Registrar of Newspapers for India with Regn. No. 52899/93. Postal Regn. No. L II/ RNP/HD/1068/2021-2023. Views and opinions expressed in the technical and non-technical articles/ news are of the authors and not of Aqua International. Hence, we cannot accept any liability for any loss or damage arising from the use of the information / matter contained in this magazine.

- Editor

CONTENTS

Editorial

Shrimp Farmers Seek Govt Help for Shrimp Exports, Electricity Tariff and reduce Soy Feed prices.

News

- 14. Prawn Farmers Seek Govt Help.
- Technological advancements, industry growth, and policy updates.
- 16. India's seafood exports US\$ 7.45 billion in FY 2024-25: MPEDA.
- 18. Awareness Programme on "Aquaculture Insurance for Fish Farmers".
- 20. Breeding Breakthroughs: Recent Advances in Induced Finfish and Shellfish Breeding.
- Sustainable Harnessing of Fisheries Balancing Conservation and Industry Growth.

- 25. National Fish Farmers Day 2025 celebrated at ICAR-CIFA, Bhubaneswar.
- 25. Input for Advancements to the Indian Fisheries Sector.

Articles

- Aquatic Jewel of Amboli: Schistura hiranyakeshi and India's First Fish-Dedicated Biodiversity Heritage Site.
- Establishing a National Fisheries Council in Bangladesh: A Strategic Imperative for Sustainable Aquaculture.
- 38. Ecological Role of Virophages.
- 40. Tiger Shrimp-Brackishwater Finfish-Mangrove Polyculture in Mitigation of Climate Change-induced Coastal Flooding.
- 46. Monsoon Management in Shrimp Farming: A Comprehensive Guide for Indian Farmers.

ADVERTISERS'INDEX

Aditi Enterprise	17	Nihal Traders	47
Buhler (India) Pvt Ltd	29	Phileo by Lesaffre	51
Deepak Nexgen Foods & Feeds Pvt Ltd	4	Poseidon Biotech	5
Famsun Co Ltd	10	Salem Microbes Pvt Ltd	26 & 27
FECPI India Pvt Ltd	37	Skretting India	21
Golden Marine Harvest	8	Sribs Biotechniqs Pvt Ltd	2
HiMedia Laboratories Pvt Ltd	3	SyAqua Siam Co. Ltd	19
Hitech Life Sciences Pvt Ltd	41	The Waterbase Limited	FC
Microbasia	6	World Aquaculture 2025	15
Multichem Specialities Pvt Ltd	23	Uni-President Vietnam Co. Ltd	13
Nandini Gears	7	Zhanjiang Hengrun Machinery	48 & 49

Subscriptions for Aqua International, English monthly, should be sent to:

The Circulation Department, Aqua International, BG-4, Venkataramana Apartments, 11-4-634, A.C.Guards, Near Income Tax Towers, Hyderabad - 500 004, India. Email: info@aquainternational.in

Vacuum coater

Exceptional design & Flexible operation

Vacuum coater for the application of oil or fat, pigments, flavors, functional improver, vitamins, etc. onto pellets after drying and/or cooling. Aquafeed and pet food in particular.

FAMSUN Co., Ltd.

Add: No.1 Huasheng Road, Yangzhou, Jiangsu, China 225127 T:+86-514-87848880 E-mail:mypublic@famsungroup.com www.famsungroup.com

Add: No 401, Dega Towers, Raj Bhavan Road, Somajiguda, Hyderebad, Telangana - 500082

T: +62-21-30027458; 30027459 Contact: Arun Kumar K

E-mail: arunkumar@famsungroup.com

Mob: +91 9901916554

Contact: Shelby E-mail: lxb@famsungroup.com

Mob: +91 9100436652

Shrimp Farmers Seek Govt Help for Shrimp Exports, **Electricity Tariff and reduce Soy Feed prices**

Often questions are raised against increasing trend of illegal & unregulated shrimp cultivation and conversion of mangrove areas to commercial shrimp farms in coastal regions of West Bengal, Odisha and Andhra Pradesh. Recently emphasis is given on preserving and restoring mangrove habitat and its protection. Integrated Mangrove Aquaculture with shrimp and mangrove trees existing and growing in the same time and place, is an environment friendly idea put into reality having beneficial impact.

Dear Readers,

The September 2025 issue Aqua International in your hands. In the news section, you may find news about....

Prawn Farmers in India are requesting Govt's

help to rescue them from the tariffs imposed by the US President Donald Trump which has come into effect. The leaders of prawn farmers' associations from the south coastal districts of Andhra Pradesh have demanded that the A.P. State Government supply electricity at Rs 1.50 per unit, reduce the price of soy feed by Rs 15 per kg. Exporters are also seeking help to diversify markets and also open more warehouses in new markets and immediately take measures. The district leaders of the prawn farmers from Tirupati, Nellore, Prakasam, Bapatla, Guntur and Krishna districts met in Ongole on 12 August 2025 which was presided over by Prakasam District Prawn Farmers Association President Mr Duggineni Gopinath.

They discussed the plight of prawn farmers and the effect of tariffs imposed by the Trump administration on India and passed resolutions. Observing the reduction in price of soy and other raw materials used to manufacture feed for the prawns, the farmers demanded that the government see the companies reduce at least Rs 15 per kg in the price of the feed and supply electricity to all prawn ponds at Rs 1.50 per unit. They demanded an MSP of Rs 250 per 100 count Vanamai prawns, Rs 400 per 30 count Vanamai, Rs 470 per 30 count of Tiger prawns, and provide a bonus if the exporters didn't pay the price.

Frozen shrimp major item of exports; USA and China are top importers. India shipped 16,98,170 metric tonnes of seafood worth Rs 62,408.45 crore (US\$ 7.45 billion) during 2024-25, with frozen shrimp sustaining its prominence as the top exported item in terms of quantity and value amid the USA and China turning out to be the major importers of the country's seafood. Frozen shrimp earned India Rs 43,334.25 crore (US\$ 5,177.01 million), enabling this variety retain its position as the most significant item in the basket of seafood exports, Marine Products Export Development Authority revealed. As for its quantity, frozen shrimp accounted for a 43.67 percent share, thus mustering 69.46 of the total dollar earnings. Shrimp exports during the period increased by 8.30 % in ₹ value and 6.06% in value US\$, MPEDA Chairman, Mr D.V. Swamy, told a media conference.

National Fish Farmers Day 2025 was celebrated

at ICAR-CIFA, Bhubaneswar. The Ministry of Fisheries, Animal Husbandry and Dairying, Government of India, in collaboration with Department of Fisheries, Government of Odisha and National Fisheries Development Board organized the National Fish Farmers Day 2025 at ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar. Celebrated every year on July 10, the day marked the pioneering achievement of Dr K.H. Alikunhi and Dr H.L. Chaudhari, who carried out the first successful induced breeding of carp fish in 1957, which transformed the landscape of Indian aquaculture. Addressing the gathering, Rajiv Ranjan Singh, Union Minister reaffirmed the Government's commitment to transform fisheries sector through innovation, capacity building and continued support under the Pradhan Mantri Matsya Sampada Yojana.

Our Mission

Aqua International will strive to be the reliable source of information to aquaculture industry in India.

AI will give its opinion and suggest the industry what is needed in the interest of the stakeholders of the industry.

AI will strive to be The Forum to the Stakeholders of the industry for development and self-regulation.

AI will recognize the efforts and contribution of individuals, institutions and organizations for the development of aquaculture industry in the country through annual Awards presentation.

AI will strive to maintain quality and standards at all times.

Contd on next page

TALK TO US

SEND AN EMAIL: info@aquainternational.in

Please do not send attachment.

FOLLOW US:

facebook.com/aquainternational.nrs twitter.com/nrspublications

Send a letter: Letters to the Editor must include writer's full name, address and personal telephone and mobile numbers. Letters may be edited for the purposes of clarity and space. Letters should be addressed to the Editor:

AQUA INTERNATIONAL, BG-4, Venkataramana Apartments, 11-4-634, A.C.Guards, Near Income Tax Towers, Masab Tank, Hyderabad - 500 004, T.S, India. Tel: +91 040 - 2330 3989, 96666 89554. Website: www.aquainternational.in

EDITORIAL From the Editor...

Input for advancements to the Indian Fisheries Sector, the Global Fisheries Conference 2023 held in Ahmedabad brought stakeholders from across the fisheries ecosystem onto a single platform. With nearly 200 exhibitors, including companies, institutions and start-ups from across the country, the event provided a vibrant space for meaningful dialogue and collaboration.

Awareness Programme on Aquaculture Insurance for Fish Farmers. The Department of Aquaculture, Dr M.G.R. Fisheries College and Research Institute, Ponneri, organized an awareness programme on "Aquaculture Insurance for Fish Farmers" on 10 July 2025. This programme was designed to address one of the most pressing needs in modern aquaculture -risk management through insurance coverage. The session commenced with an inspiring inaugural address by Dr S. Balasundari, Dean, who emphasized the growing vulnerability of aquaculture operations to unpredictable challenges such as climate variations, disease outbreaks and economic instabilities. She highlighted the pivotal role of insurance as a safeguard to protect the livelihood of fish farmers from unexpected losses. She remarked: "Aquaculture insurance is not just a financial tool; it is a lifeline that empowers fish farmers to recover from unforeseen setbacks and continue their contributions to food security and economic growth".

On the occasion of National Fish Farmers Day 2025, the Department of Aquaculture, Dr M.G.R. Fisheries College and Research Institute, Ponneri, organized a webinar titled "Breeding Breakthroughs: Recent Advances in Induced Finfish and Shellfish Breeding". The event was held in hybrid mode, facilitating participation from both on-campus attendees and virtual participants across various regions. The programme commenced with an inaugural address by Dr S. Balasundari, Dean of the Institute, who emphasized the vital importance of continual innovation in aquaculture seed production. She highlighted how advancements in breeding technologies directly contribute to the welfare of fish farmers and the sustainability of aquaculture sector.

Dr Naga Murali Chalamalasetti wrote his experience and views that Sustainable Harnessing of Fisheries Balancing Conservation and Industry Growth. Impact on Environment is a broad term and we will simplify that into Key elements which will be impacted by Aquaculture. Land – Ponds based Aquaculture need lot of land which will be dug to make embankments and then filled with water. By doing so, the land adjacent to these ponds will be not suitable for agriculture further due to various reasons like seepage or due to salinisation of soil when the ponds are pumped with salt water. Water – Almost all the water bodies adjacent to fish / shrimp ponds or water bodies harbouring fish cages have been polluted or getting polluted and ending up eutrophication.

In the Articles section, article titled "Aquatic Jewel of Amboli: Schistura Hiranyakeshi and India's First Fish - Dedicated Biodiversity Heritage Site", authored by Krishna Patil, Omkar Patil, Swapnil Ghatge says that India is abode to rich biodiverse flora and fauna spanning through the landmass from the towering Himalayas to Kanyakumari, with over 7% of the world's recorded species and varieties of endemic plants and animals. Protection of these invaluably rich treasures is need of the hour. Indian Government have enacted the Biological Diversity Act, 2002, which

empowers states to declare areas of significant ecological value as Biodiversity Heritage Sites and are legally recognised under Section 37(1). These BHS sites are not just reservoirs of flora and fauna, but also carry deep cultural, historical and ecological significance often shaped by centuries of human nature interaction. These NHS sites are well-defined areas that are ecologically fragile, rich in wild and domesticated species.

Another article titled, "Establishing a National Fisheries Council in Bangladesh: A Strategic Imperative for Sustainable Aquaculture", authored by Md Abu Kawsar proposes, the formation of a National Fisheries Council in Bangladesh to regulate and professionalize the aquaculture sector. Highlights critical issues such as antibiotic misuse, weak governance and lack of coordinated oversight. Outlines the Council's key roles including professional certification, policy implementation, ethical regulation and disease management. Presents a stepwise roadmap for establishing the Council, drawing lessons from international models.

Another article titled, "Ecological Role of Virophages", authored by Mohit, Avneesh Singh, Lavish Saran, Litha Cerbal, Shiwam Dubey, says Virophages are a unique class of viruses that parasitize other viruses, specifically giant viruses such as mimi viruses and phycodna viruses. These viruses, which are typically circular double-stranded DNA entities, rely on the replication machinery of their host viruses to propagate. Virophages infect host cells that are already infected by a giant virus, using the viral factory of the giant virus for their own replication. First, discovered in 2008 with the Sputnik virophage, this remarkable discovery has opened new avenues of research into virus interactions and viral ecology.

Another article titled, "Tiger Shrimp-Brackishwater Finfish Mangrove Polyculture in Mitigation of Climate Changeinduced Coastal Flooding", authored by Subrato Ghosh says Since 2001, often questions are raised against increasing trend of illegal & unregulated shrimp cultivation and conversion of mangrove areas to commercial shrimp farms in coastal regions (Blocks) of West Bengal, Odisha and Andhra Pradesh. Recently emphasis is given on preserving and restoring mangrove habitat and its protection. Integrated Mangrove Aquaculture with shrimp and mangrove trees existing and growing in the same time and place, is an environment friendly idea put into reality having beneficial impact. It is a novel initiative taken by Kolkata based NGOs in North 24 Parganas district near to Sundarbans region since 2019. Observations on management practices followed at chemical free IMA sites of progressive brackishwater aquaculturists by profession, Mr Pintu Kumar Das and Mr Saheb Ali Mondal are presented in this write up, compiled on World Mangrove Day on 26 July 2025, emphasizing on commendable work done by Mr Mondal on promoting organic shrimp production.

Readers are invited to send their views and comments on the news, special feature and articles published in the magazine which would be published under "Readers Column". Time to time, we shall try to update you on various aspects of Aquaculture sector. Keep reading the magazine Aqua International regularly and update yourself. Wish you all fruitful results in your efforts.

M.A.Nazeer Editor & Publisher Aqua International

AQUACULTURE PROBIOTICS EXPERT

Hie Pi

NET 200 9 BS **⊗** Probiotics

1. WATER QUALITY CONDITIONING

Best choice of Bacillos spp. that rapidly decompose uneaten feed, feces and other organic substances in pond water, keeps water quality optimal.

ESTABLISH BALANCED POND BACTERIA SYSTEM

Compete nutrition with vibrio and entitle them to grow. Provide nutrition for probiotics in the point, to establish a well-balanced farming system.

Good quality of water prevents fish/prawn infections, making high 5. INCREASE AQUACULTURE PRODUCTION

profit of production

2. HIGH ACTIVITY OF SPORES

No cultivation is needed. Easily adapt to the changes of surroundings and grow fast in freshwater or seawater culture farming, even under low oxygen environment

3. DECREASE AMMONIA CONTENT Prevent the accumulation of toxic substances such as NH,, NO,, etc.

4. IMPROVE WATER COLOR Improve water color regulate the algae and bacteria balance in water, turning your pond from green to clear

COMPOSITION:

Bacillus spp. > 1x 1011 cfu/kg

(Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis)

75% 10% Carrier (rice bran, corn gluten)

Moisture

STORAGE:

Keep at dry, well-ventilated condition. Avoid direct sunlight exposure and use as soon as possible once opened for best quality.

BSL

Mu R

DIRECTION

No cultivation is needed. Apply Nuri BSL with water-soluble bag near to the working water wheel or pour into the pond evenly. Recommend apply Uni-Light PSB together with Nuri-BSL on sunny day to achieve a clear pond more efficiently.

UNI-LIGHT PSB Funtion:

- Inhibit the growth of Vibrio spp. Decompose pond bottom
- Purification of water quality

BSL Dosage:

/10,000 m² Guantity	10 - 30 pl/m² tiger prawn or < 80 pl/m² Vannamel	For >30 pl/m² tiger prawn or >80 pl/m² Vannamei	For > 150 pl/m² Vannamel
7 days before stocking	800 g - 1,000 g	1,200 - 1,500 g	1,200 - 1,500 g
Day of stocking	300 9 - 500 9	800 g - 1,000 g	800 g - 1,000 g
Every 7 - 10 days after stocking	300 g · 500 g	800 g - 1,000 g	3 - 5 days / use 1,000g - 2,000g

UNI-PRESIDENT VIETNAM CO., LTD

No. 16-18-20, DT 743 Road, Song Than II Ind Zone,
 Di An Ward, Di An City, Birh Duong Province, Vietnam.

a aquafeed@upvn.com.vn

Prawn Farmers Seek Govt Help

Demand the government to supply electricity at Rs 1.50 per unit, reduce price of Soy feed by Rs 15 per kg

Duggineni Gopinath speaking at the meeting with south coastal prawn farmers leaders on 12 August 2025 in Ongole, Andhra Pradesh.

Ongole, Andhra Pradesh: The leaders of prawn farmers' associations from the south coastal districts of Andhra Pradesh have demanded that the government supply electricity at Rs 1.50 per unit, reduce the price of soy feed by Rs 15 per kg and immediately take measures to rescue them from the tariffs imposed by the US President Donald Trump.

The district leaders of the prawn farmers from Tirupati, Nellore, Prakasam, Bapatla, Guntur, and Krishna districts met in Ongole on 12 August 2025, as Prakasam district **Prawn Farmers Association** president Duggineni Gopinath presided over the meeting. They discussed the plight of prawn farmers and the effect of tariffs imposed by the Trump administration on India, and passed resolutions.

Observing the reduction in price of soy and other raw materials used to manufacture feed for the prawns, the farmers demanded that the government see the feed companies reduce at least Rs 15 per kg in the price

of the feed, and supply electricity to all prawn ponds at Rs 1.50 per unit.

They demanded an MSP of Rs 250 per 100 count Vanamai prawns, Rs 400 per 30 count Vanamai, Rs 470 per 30 count of Tiger prawns, and provide a bonus if the exporters didn't pay the price.

They also asked the government to introduce prawns in the menu of meals at government schools, hostels, and Anganwadi centres. The farmers also demanded that the government ensure that about 30 percent of the prawns procured by exporters are sold in local markets, provide loans at a 50 percent subsidy to establish processing units, and encourage exports to Australia, South Korea, and European countries to reduce dependency on the US and China.

The Prawn Farmers
Association state vicepresident, K Srinath
Reddy, assistant secretary,
M Venkateswara Rao,
presidents, secretaries,
and leaders from the
district associations also
participated in the meeting.

Technological advancements, industry growth, and policy updates

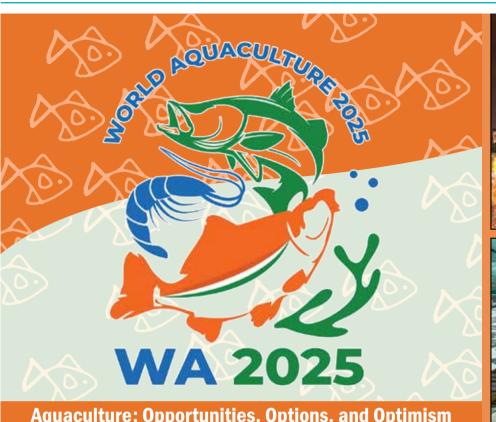
Land-based salmon farming is seeing record production, while new aquaculture tech groups are expanding. Global aquaculture production surpassed capture fisheries in 2022, and the seafood market is expected to reach \$650 billion in 10 years. Policy changes, like the EU's deforestation rules, are also impacting the seafood industry.

Technological Advancements & Industry Growth:

- Land-based salmon farming: Land-based salmon farms are achieving production records, highlighting the potential of this technology.
- Aquaculture tech groups: New landbased aquaculture tech groups are hiring new leadership and expanding into new markets.
- Global production:
 Aquaculture production
 has surpassed capture
 fisheries, with global
 aquaculture reaching
 130.9 million tonnes
 in 2022, including 94.4
 million tonnes of aquatic
 animals.
- World seafood market:
 The world seafood market is projected to reach \$650 billion in the next decade.
- India's aquaculture:

 India's aquaculture
 sector is seeing
 government support and
 investment, with a focus
 on boosting seafood
 exports.

Policy and Trade Impacts:


• EU Deforestation Rules:

The EU's deforestation rules are impacting the seafood industry, requiring companies to demonstrate sustainable sourcing practices.

- India's Fisheries Sector:
 The Indian government is focusing on boosting the fisheries sector, including deep-sea fishing and seafood exports.
- US Tariffs: The US and China's trade war is impacting the seafood market, with tariffs affecting certain companies and products.
- UK-EU Trade Deal: A UK-EU trade deal is affecting the salmon industry, with Salmon Scotland welcoming the deal.

Other Notable News: New Eel Species Discovered:

- A new eel species has been discovered off the coast of Thoothukudi, India, and named after Tamil.
- Red Snapper Seed Production: The ICAR-CIBA has developed a seed production technology for red snapper, a high-value fish, which could boost brackishwater aquaculture in India.
- Aquaconnect R&D: Aqua connect, a Chennaibased aquaculture company, is investing \$4.5 million in biologicals R&D.
- eFishery Funding: An Indonesian aquaculture startup, eFishery, raised a record \$90 million in a Series C funding round.

Aquaculture: Opportunities, Options, and Optimism

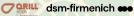
November 10 - 13, 2025 Hyderabad, India

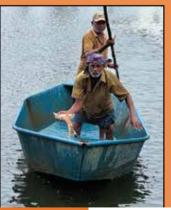
Hyderabad International Convention Center - Novotel Organized by

> WERLD AQUACULTURE Society

Supported by

WAS Premier Sponsors





www.was.org or contact apcsec@was.org; worldagua@was.org Exhibition, sponsors – mario@marevent.com

India's seafood exports US\$ 7.45 billion in FY 2024-25: MPEDA

Frozen shrimp major item of exports; USA and China are top importers

Kochi, Aug 23: India shipped 16,98,170 metric tonnes of seafood worth Rs 62,408.45 crore (US\$ 7.45 billion) during 2024-25, with frozen shrimp sustaining its prominence as the top exported item in terms of quantity and value amid the USA and China turning out to be the major importers of the country's seafood.

Frozen shrimp earned India Rs 43,334.25 crore (US\$ 5,177.01 million), enabling this variety retain its position as the most significant item in the basket of seafood exports, Marine Products Export Development Authority (MPEDA) revealed today.

As for its quantinty, frozen shrimp accounted for a 43.67 per cent share, thus mustering 69.46 of the total dollar earnings. Shrimp exports during the period increased by 8.30 % in ₹ value and 6.06% in value US\$, MPEDA Chairman Shri D.V. Swamy, IAS, told a media conference here.

The overall export of frozen shrimps during 2024-25 was pegged at

7,41,529 MT. USA, which is the largest market, imported (3,11,948 MT) of frozen shrimp, followed by China (1,36,164 MT). The other top importers in the order are European Union (99,310 MT), South-East Asia (58,003 MT), Japan (38,917 MT) and the Middle East (32,784 MT). Other countries all together totalled 64,403 MT. The export of Vannamei, Black Tiger and Scampi showed an increase in both the volume and value.

Frozen Fish, the second largest exported item, fetched Rs 5,212.12 crore (\$ 622.60 million).

Frozen squid, which is the third largest exported item, earned Rs 3078.01 crore (US\$ 367.68 million), showing a positive export trend of 0.54 per cent in terms of rupee value.

The export of dried Items pegged at 2,52,948 MT, earning Rs 2852.60 crore (\$ 340.75 millions), Shri Swamy pointed out at the press meet, where MPEDA Director Dr Ram Mohan M.K. gave a powerpoint presentation on the milestones of MPEDA in its

services to the sector.

Frozen cuttlefish showed a growth in terms of volume and value in US dollars by 9.11 per cent and 3.99 per cent respectively. The exports were 59,264 MT worth US\$ 285.57 million.

The export of chilled items fetched ₹659.41 crore (US\$ 78.79 million), while that of live Items gained a growth of 15.21 per cent in value (US\$ 56.01 million).

As for overseas markets, USA continued to be the major importer of Indian seafood in value terms with an import worth US\$ 2,714.94 million, with volume handled 3,46,868 MT. Exports to the US increased by 6.50 per cent in US dollars, 8.76 per cent in rupee value and 5.37 per cent in volume. Within USA's seafood import basket by India, frozen shrimp continued to be the principal item with share of 92.55 per cent in terms of US dollar.

China emerged as the

largest seafood export destination from India in terms of quantity: 3,96,424 MT worth US\$ 1,276.58 million. European Union continued to be the third largest destination by terms of dollars, with an import of 2,15,080 MT (\$ 1,125.60 million).

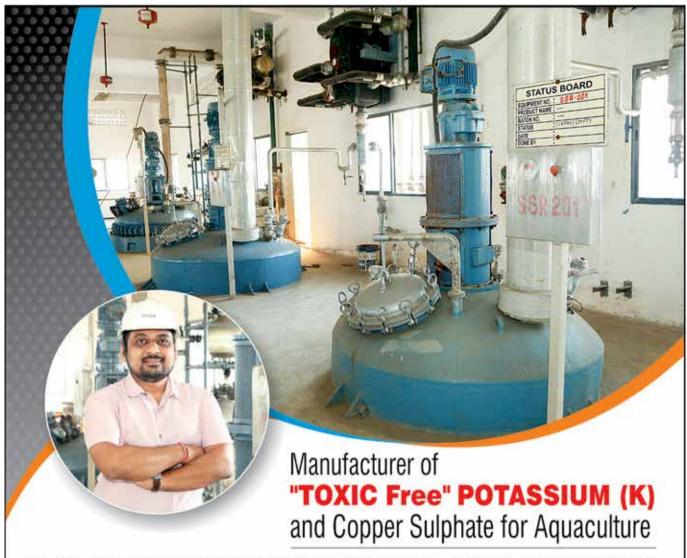
South East Asia is the fourth largest market by with an import of 3,47,541 MT worth 974.99 million dollars. Japan continued to be the fifth largest importer by terms of dollar with an import of 1,02,933 MT worth US\$ 411.55 million. The Middle East is the sixth largest destination by dollar terms with an import of 65,956 MT worth US\$ 278.31 million.

The top two ports handled seafood cargo were Vizag (Andhra Pradesh) and Jawaharlal Nehru Port Authority (Navi Mumbai).

Also present at the conference was MPEDA Joint Director (Training) Dr S. Kandan.

Aqua International

English monthly on Aquaculture


Annual Subscription Cost: Rs. 800

Scan QR code to send payment to subscribe to Aqua International

Contact: NRS Publications

BG-4, Venkataramana Apts,11-4-634, A. C. Guards, Hyderabad 500 004, Telangana, India. Tel: 040 - 2330 3989 | M: 96666 89554 E: info@aquainternational.in

We, "ADITI ENTERPRISE" the leading manufacturers of POTASSIUM (K), equipped with an ultramodern manufacturing facilities designed to precisely meet our clients' diverse and specific requirements.

"Repeatedly Delivering Various Grades to Our Clients"

- K-Mineral Grade for Aquaculture (1) Premix K (As per Specification)
- 11 Food Grade LR Grade
- ▼ Technical Grade (85% to 99%) Developed Grade for Food Colors Ind.

Plot No. 1031/B, GIDC, Little Hut Chowkdi, ANKLESHWAR-393002, Gujarat - INDIA.

@ Contact: +91 93134 60234 +91 95588 05321

- aditienterprise70@gmail.com
- www.mineralsaditi.co.in

hidden Creative

Awareness Programme on "Aquaculture Insurance for Fish Farmers"

The Department of Aquaculture, Dr M.G.R. Fisheries College and Research Institute, Ponneri, organized an Awareness Programme on "Aquaculture Insurance for Fish Farmers" on 10th July 2025. This programme was designed to address one of the most pressing needs in modern aquaculture—risk management through insurance coverage.

Inaugural Address

The session commenced with an inspiring inaugural address by Dr S. Balasundari, Dean, who emphasized the growing vulnerability of aquaculture operations to unpredictable challenges such as climate variations, disease outbreaks, and economic instabilities. She highlighted the pivotal role of insurance as a safeguard to protect the livelihoods of fish farmers from unexpected losses.

"Aquaculture insurance is not just a financial tool; it is a lifeline that empowers fish farmers to recover from unforeseen setbacks and continue their contributions to food security and economic growth," she remarked.

Technical Session

The technical session was led by Mr Th. Srinivasan, representing Alliance Insurance Brokers, Chennai. His session was informative, interactive, and solution-oriented, focusing on the real-world applications of insurance for aquaculture. Key topics covered included:

Types of Coverage:

Detailed explanation of available aquaculture insurance schemes designed for different farming systems and production scales.

Eligibility and Premium Structures:

Clear insights into eligibility criteria and premium calculations tailored to farmers' specific needs.

Claim Processes & Documentation:

A simplified guide to claim

settlements and necessary documentation to ensure timely financial support.

Importance of Financial Protection:

How insurance helps mitigate losses due to disease outbreaks, natural calamities, operational failures, and other production risks.

The presentation successfully addressed farmers' doubts and clarified misconceptions regarding insurance procedures and benefits, making it a highly engaging knowledge-sharing session.

Interactive Participation

The programme witnessed active participation from 20 aqua farmers and 55 students, who engaged in meaningful discussions and asked practical questions concerning their farming experiences. This exchange of perspectives enriched the session and created a platform for building awareness about financial risk management in aquaculture.

Vote of Thanks

The session concluded with a vote of thanks by

Mr R. Dinesh, Assistant Professor, Department of Aquaculture, who acknowledged:

The Dean for her unwavering support and leadership

The resource person for his expert guidance and comprehensive presentation

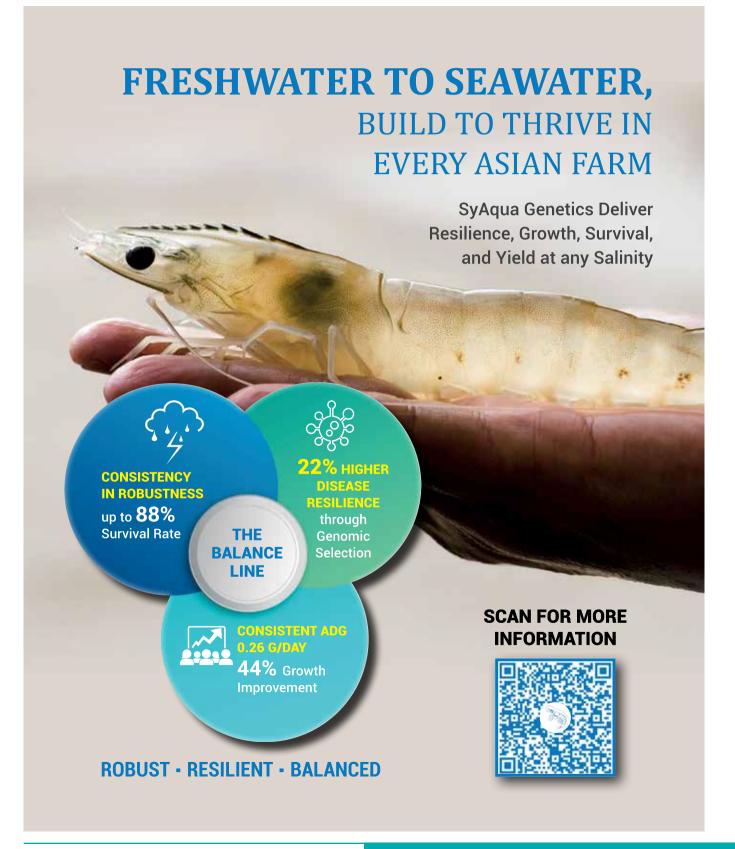
The participants for their enthusiastic involvement

The organizing team for their efforts in successfully conducting the event

Impact and Outcome

This awareness programme marked a significant step towards fostering financial literacy and security among aquaculture farmers. By introducing participants to various insurance schemes and their benefits, the session empowered farmers to adopt risk mitigation strategies, ensuring both economic stability and sustainable growth in the aquaculture sector.

The event served as a timely and impactful initiative, aligning with the broader goals of promoting resilient and secure aquaculture practices, ultimately benefiting both farmers and the aquaculture industry at large.



A View of participants

Breeding Breakthroughs: Recent Advances in Induced Finfish and Shellfish Breeding

On the occasion of National Fish Farmers Day 2025, the Department of Aquaculture, Dr M.G.R. Fisheries College and Research Institute. Ponneri, organized a webinar titled "Breeding Breakthroughs: Recent Advances in Induced Finfish and Shellfish Breeding". The event was held in hybrid mode, facilitating participation from both on-campus attendees and virtual participants across various regions.

The programme commenced with an inaugural address by Dr S. Balasundari, Dean of the Institute, who emphasized the vital importance of continual innovation in aquaculture seed production. She highlighted how advancements in breeding technologies directly contribute to the welfare of fish farmers and the sustainability of the aquaculture sector.

The technical session comprised three distinguished expert talks, each providing valuable insights into the latest developments in the field

of induced breeding in finfish and shellfish species.

- Dr Aritra Bera, Senior Scientist, ICAR-CIBA, Chennai, delivered a comprehensive lecture on recent advancements in the hatchery seed production of brackishwater fishes. His presentation covered key topics such as broodstock management, larval rearing techniques, and innovative breeding technologies successfully developed by ICAR-CIBA.
- Smt. M. Kavitha,
 Scientist, ICAR-CMFRI,
 Tuticorin Regional
 Station, spoke on
 the progress made
 in hatchery seed
 production of molluscan
 shellfishes. She
 focused particularly
 on enhanced breeding
 practices for oysters and
 cephalopods, outlining
 practical methodologies
 and improvements in
 hatchery protocols.
- · Dr S. Selvaraj, **Assistant Professor** and Head in-charge of the Department of Aquaculture, Dr M.G.R. FCRI, discussed the latest advancements in hypophysation techniques used in induced breeding of freshwater finfishes. His talk shed light on improved hormonal induction protocols, leading to better spawning success rates and seed quality.

The event concluded

with a vote of thanks by Dr S. Selvaraj, who acknowledged the invaluable contributions of the guest speakers, the support of the organizing committee, and the enthusiastic participation of attendees. The webinar was attended by over 100 students in person and 42 participants online, marking the event as a successful and impactful initiative. It served as a significant platform for knowledge dissemination, academic collaboration, and promotion of innovative practices in the field of aquaculture breeding.

ENTRY FREE INTO EXHIBITION

Skretting 360+

PRECISION FEEDING

Right Feed at Right Frequency with Zero Hassel **GAMMA** Kuroline

INTEGRATED SOLUTIONS

Combining Technology with Right Products

DEDICATED TECHNICAL SUPPORT

Technical experts for continuous support

SKRETTING INDIA

Unit No. L4 04, SLN Terminus, Survey No. 133, Besides Botanical Gardens Gachibowli, Hyderabad-500032, Telangana $| \boxtimes$ contact.india@skretting.com ◎www.skretting.in | Skretting-India | Skretting India

Sustainable Harnessing of Fisheries Balancing Conservation and Industry Growth

By Dr Naga Murali Chalamalasetti

About Me & What I Do

I am a qualified fish farmer who completed B.F.Sc from College of Fishery Science, Muthukur, Andhra Pradesh, completed MFSc from College of Fishery Science, Ratnagiri, Maharashtra and Ph.D from MSU, Tirunelveli, Tamilnadu.

I am a shrimp farmer since 1991 when my father started shrimp farming and I was taking care of PI sourcing and nursery management.

I am a entreprenuer from 2013 where I started my own company in Ghana

I am an researcher since 2021 when I started researching into food safety & security post COVID

Finally emerged as a Biofloc Technologist producing Fish & Shrimp which is social friendly, environmental friendly and safe to eat.

Aquaculture and Its impact on Environment

Environment is a broad term and we will simplify that into Key elements which will be impacted by Aquaculture

- Land Ponds based
 Aquaculture need lot of
 land which will be dug
 to make embacments
 and then filled with
 water. By doing so,
 the land adjacent to
 these ponds will be not
 suitable for agriculture
 further due to various
 reason like seepage or
 due to salinisation of
 soil when the ponds
 are pumped with salt
 water.
- Water Almost all the water bodies adjacent to fish/shrimp ponds or water bodies harboring fish cages have been polluted or getting polluted and ending up eutrophication. Finally most of the water

bodies become unfit to use the water for drinking purpose due to high usage of chemicals, pesticides, drugs in Aquaculture and also the effluent water contains high nitrite, nitrate, phosphate etc.

Air

- Ammonia (NH₃) Emissions, Ammonia is released from fish waste and uneaten feed., High in intensive or poorly managed systems, especially recirculating aguaculture systems (RAS) and ponds with high stocking densities., NH₃ is a harmful air pollutant, causing respiratory issues in humans and contributing to eutrophication and acid rain when deposited on land.
- Methane (CH₄)
 Emissions, Anaerobic decomposition of organic matter in sediments or sludge (bottom of ponds)., Especially significant in poorly aerated ponds, where sludge accumulates and breaks down without oxygen, Methane is a potent greenhouse gas (GHG).
- Hydrogen Sulphide (H₂S) Release, Produced under anaerobic conditions in sediment, Has a rotten egg smell


- and is toxic to fish and humans in high concentrations, Common in poorly maintained pond bottoms or sludgeheavy systems.
- Nitrous Oxide (N₂O)
 Emissions, Formed during nitrification and denitrification in water and biofilters, N₂O is a powerful greenhouse gas, with 300× the warming potential of CO₂.
- Particulate Matter (PM), In land-based operations, activities like feed handling, fish processing, or construction can release dust and fine particles, Can affect local air quality, especially near large aquaculture farms.

Key Pollutants and Indicators of Pollution

- Ammonia Content in Air & Water
- Nitrite and Nitrate contents in water bodies adjacent to Aquaculture ponds/ Cages
- Phosphates in water
- · Blue green algae
- Hydrogen sulphide
- Sludge and sedimentation in water bodies
- Mineral profile
- Pesticides and Organophosphates
- Species diversification

Most affected regions in India where aquaculture pollution has significantly degraded water and surrounding ecosystems:

1. Kolleru Lake, Andhra Pradesh, Once a vast

The **CHEM** istry of care ensures livestock success™

Sodium Percarbonate (Granules/ Tablets)

Dioctyl Dimethyl Ammonium Chloride 80% (DDAC)

READY STOCK AVAILABILITY

2-4-Dichloro-3,5-Dimethylphenol (DCMX), 4-Chloro-3,5-Dimethylphenol (PCMX), Benzalkonium chloride (BKC), Glutaraldehyde 50% Disinfectants & Sanitizers

Algaecides Potassium Permanganate, Sodium Percarbonate

Oxidizing Agents Triple Salt (Potassium Monopersulfate, KMPS), Potassium Permanganate

Water Conditioners Zeolite, Tea Seed Powder, Yucca Liquid

Biocides Dioctyl Dimethyl Ammonium Chloride 80%, Octyl Decyl Dimethyl Ammonium Chloride 80%

Multichem Specialities Private Limited

1215, Dalamal Tower, Nariman Point, Mumbai 400021, India T: +91 22 4343 2121 | M: +91 979 979 5353 | +91 979 979 9393

E: sales@multichemindia.com @ /multichem_india

www.multichemindia.com

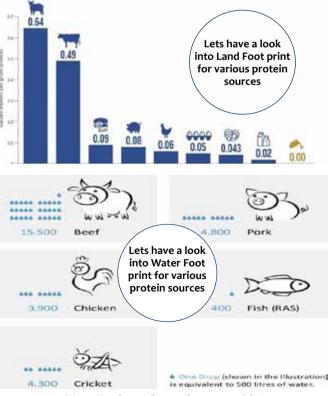
Join us at Global Chem Show 2025! Visit Booth #D5 on 18th - 19th December at Bombay Exhibition Center, Goregaon (E), Mumbai, to explore our offerings.

ISO 9001 | ISO 14001 | ISO 45001

- freshwater lake, now ~42% converted into fish/shrimp ponds by 2001, Effluent from extensive aquaculture has:, Blocked natural water flow, causing flooding and reducing drinking water quality. Introduced high levels of nutrients, chemicals, heavy metals, antibiotics, and pesticides.
- 2. Pulicat Lake, Andhra Pradesh/Tamil Nadu, Estuarine lagoon facing pollution from sewage, agricultural runoff, and industrial/seafood processing waste. Shrimp farms and salt works on 1,000 acres emitting heavy nutrients and chemicals. Consequences include loss of biodiversity, turbidity, drying up of 40% of the lake, and livelihood threats for 50,000 locals.
- 3. Chilka Lake, Odisha,
 Brackish-water lagoon
 where commercial
 prawn farming
 expanded heavily
 Resulted in freshwater
 weed proliferation, loss
 of biodiversity, and
 reduced productivity.
 Declared on the Ramsar
 Montreux Record
 due to ecological
 degradation from
 aquaculture .
- 4. Andhra Pradesh Delta Region, Intensive pond aquaculture (e.g., shrimp) in Godavari/ Krishna deltas is leaching ammonia, nitrates, and chemicals into soils and groundwater .Organicrich effluents pollute nearby canals, adversely affecting adjacent agriculture .

- 5. Radhanallur (Tamil Nadu) & Mangalore Coast, Shrimp farms experience salinity fluctuations, soil acidification, plus eutrophication and harmful red tides .Clam poisoning incidents due to paralytic toxins in coastal areas near Chennai and Mangalore
- 6. Karnataka –
 Netravati River (Cage
 Aquaculture), Pollution
 suspected from
 upstream sources killed
 pompano and mussels
 in cages near Ullal
 Hoige (Mangalore)
 in 2023 .Official
 probes are ongoing
 to identify responsible
 contaminants.
- 7. Kerala Ashtamudi
 Lake, Intensely polluted
 by sewage, industrial
 discharge, boat oil
 spills, and microplastics
 in fish/shellfish
 .Aquaculture adds to
 the pollution stress
 along with habitat
 destruction and heavy
 metals .

Common Impacts Across Regions


- Water contamination: Elevated nutrients (N, P), heavy metals (lead, cadmium), antibiotics, organic sludge.
- Ecological harm:
 Algal blooms, oxygen depletion, fish kills, harmful red tides, biodiversity loss.
- Human health & livelihoods: Polluted drinking water, contaminated seafood, loss of fisheries/ agriculture.
- Dr Naga Murali Chalamalasetti

Cage Culture in Nile River before Govt banned them

Kolleru Lake: A once-thriving ecosystem drowned by Aquaculture's Growth

National Fish Farmers Day 2025 celebrated at ICAR-CIFA, Bhubaneswar

The Ministry of Fisheries, Animal Husbandry and Dairying, Government of India in collaboration with Department of Fisheries, Government of Odisha and National Fisheries Development Board organized the National Fish Farmers Day 2025 at ICAR-Central Institute of Freshwater Aquaculture, Kaushlyaganga, Bhubaneswar.

Celebrated every year on July 10, the day marks the pioneering achievement of Dr K.H. Alikunhi and Dr H.L. Chaudhari, who carried out the first successful induced breeding of carp fish in 1957, which transformed the landscape of Indian aquaculture.

Addressing the gathering, Shri Rajiv Ranjan Singh, Union Minister reaffirmed the Government's commitment to transform fisheries sector through innovation, capacity building and continued support under the Pradhan Mantri Matsya Sampada Yojana (PMMSY). On the occasion, he launched 17 fisheries clusters, ICAR-NFDB training calendar, seed certification and hatchery guidelines, and ICAR-CIFA publication

"Freshwater Aquaculture Technologies: Innovations for Diversification and Sustainability". The Minister also felicitated traditional fishermen, FFPOs, start-ups and beneficiaries of Government schemes like Kisan Credit Card and Aquatic Crop Insurance.

He virtually inaugurated and laid the foundation stone of several PMMSY projects, with an emphasis on improving infrastructure and holistic support for fish farmers. Pointing out that fish production has grown by 103% in the last decade (2014-2024), he emphasised the importance of skill development in emerging sectors like pearl farming, organic aquaculture, pabda and murrel farming.

Senior Government officials

including Prof. S.P. Singh Baghel, and Shri George Kurien, Union Ministers of State: Shri Gokulananda Mallick, Minister of Fisheries, Odisha; Shri Sukanta Kumar Panigrahi, MP; Shri Ashrit Patnaik, MLA; Dr Abhilakshya Likhi, Secretary, Department of Fisheries; Dr J.K. Jena, **Deputy Director General** (Fisheries), ICAR; Dr B.K. Behera, Chief Executive Officer, NFDB: and Dr P.K. Sahu, Director, ICAR-CIFA; were present at the event among other prominent dignitaries.

The main attraction was an exhibition showcasing value-added products, innovations and grassroots aquaculture initiatives by FFPOs, start-ups and women-led fishermen groups.

With over 1,500 participants including farmers, entrepreneurs, scientists, and stakeholders, the event showcased strong grassroots engagement and served as a platform to strengthen synergies between science, policy, and community-led aquaculture in advancing India's Blue Revolution.

Input for advancements to the Indian Fisheries Sector

The Global Fisheries
Conference 2023 held in
Ahmedabad successfully
brought stakeholders from
across the fisheries ecosystem onto a single platform.
With nearly 200 exhibitors,
including companies, institutions, and start-ups from
across the country, the
event provided a vibrant
space for meaningful dialogue and collaboration.

As we now look beyond the Pradhan Mantri Matsya Sampada Yojana (PMMSY), the Department of Fisheries is committed to exploring new avenues to further empower and elevate the Indian fisheries industry.

In this regard, we genuinely want to hear your suggestions and innovative ideas. We are particularly keen and serious about understanding what support, interventions, addition of line items under PMMSY or facilitation mechanisms you believe could significantly drive innovation, sustainable growth, and advancement for the fisheries sector, specifically for your businesses and institutions.

Whether your ideas are related to technological advancements, infrastructure development, market access improvements, skill-building initiatives, or any other area, your input is highly valued and will directly influence our approach and planning for the future.

We would greatly appreciate it if you could share your thoughts and ideas directly by replying to this email and will eagerly await your valuable suggestions and will thoroughly review each response received.

BACTERIOPHAGE THERAPY FOR SHRIMP HATCHERY

PHAGE

EFFECTIVE ON SUPERBUGS

BACTERI THERAPY T **PATHOGEN**

V PHAGES HATCHERY & V PHAGES GROWOUT are a co they are safe on aquatic animals, people and ecosystem resistant to antibiotics and incre

"V PHAGES" cocktail targets against most common pathog

· Vibrio parahaemolyticus · Vibrio alginolyticus · Vibrio h

100 % Natural | Pathogen specific approach Easy & Safe to use | Do

ILLUSTRATION OF ACTION OF PHAC

BENEFITS

Broodstock:

Prevents entry of opportunistic pathogens and safeguards health of this high value asset.

Artemia:

Reduces the Vibrio sp. load in Artemia tank.

Zoea & Mysis:

Helps in better conversion and survival.

Post Larvae:

Stagewise control of Vibrio sp. results in remarkable reduction of Vibrio sp. load in post larval tanks. This results in high health seeds.

Works as an Alternative to Antibiotics and complies with International Seafood export regulations.

One Health unified approach for balanced welfare of people, animals and ecosystems.

New **Phages** Dead Pathogen Lysis of pathogen and release of new phages

To order contact

E-Mail: contact@salemmicrobes.com

A Product of

for further action

SALEM MICROBE An ISO 9001 : 2015 Company

OPHAGE O DESTROY IC VIBRIOS

ocktail of Phages isolated from Natural environment. Hence s. This destroys the pathogenic bacteria which are even eases the efficacy of probiotics.

enic Vibrio species in Shrimp Hatchery & Farming

arveyi · Vibrio campbellii and other pathogenic Vibrio sp.

Very Fast action | Enhances Probiotic performance es not leave any residues

GE ON A TARGET VIBRIO BACTERIA

BACTERIOPHAGE THERAPY FOR SHRIMP FARMS

EFFECTIVE ON SUPERBUGS

BENEFITS

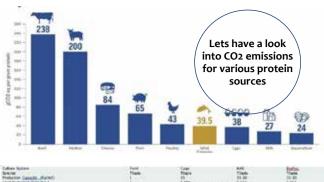
- Effective against Vibriosis, other Bacterial Infections and Running Mortality Syndrome (RMS).
- Effectively prevents Gut Infections and Improves feeding.
- Prevents sudden crop loss and extends Life of Pond during critical profit-making period.
- Enhances Probiotic performance.

Works as an Alternative to Antibiotics and complies with International Seafood export regulations.

Stages of Vibrio sp. colonies infected with Bacteriophages & Progressive Lysis observed on an Agar plate, under Stereo Microscope

Colony 1 in Stage 1: Intact Colony may be infected or yet to get infected. Colony 2 in

Stage 2:


Phage infected

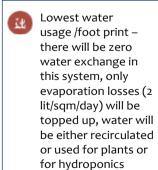
Colony showing Partial Ivsis

Colony 3 in Stage 3: Phage infected Colony Completely lysed, cell contents with multiplied phages spreads out in search of their host

S PRIVATE LIMITED

Regd. Off: No. 21/10C, Bajanai Madam Street, Gugai, Salem - 636 006. Tamilnadu. India. Customer Care: +91 8695145602 E-Mail: contact@salemmicrobes.com www.salemmicrobes.com

A Brief comparision of Production systems



Biofloc Tilapia Farm with complete Solar energy

Major advantages of Biofloc

Lowest FC

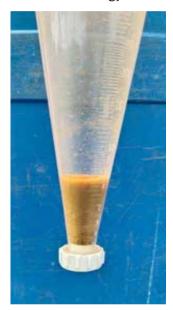
Zero/least Nitrogen emissions, since carbon is neutralising it and converting into floc which is consumed by fish again.

By growing fish in this culture I can decalre the lowest land/water usage and least nitrogen and phosphorus emissions and lowest carbon foot print which makes my product environment friendly and sustainable.

Negative carbon foot print – we will be using the carbon produced in other food industry as waste as raw material here which gives a negative carbon foot print. But yes since we depend more upon the aeration in this system, there will be carbon foot print coming from electricity, generator fuel etc. which we are trying to avoid by using solar and wind energy.

What is Biofloc Technology

Biofloc technology (BT) is defined as the use of aggregates of bacteria, algae, or protozoa, held together in a matrix along with particulate organic matter for the purpose of improving water quality, waste treatment and disease prevention in intensive aquaculture systems.


In other words, Biofloc is a symbiotic process that includes confined aquatic animals, heterotrophic bacteria and other microbial species in the water. Consumption of bio flocs also provides nutritional value to cultured aquatic species.

This simply means that BT can be an ideal option for sustainable and environmentally friendly aquaculture (Crab et al., 2009, 2012).

I will also add what I understood about BT, "conversion of waste generated in aquaculture systems using the biological relation between Carbon and Nitrogen (C:N = 12:1)"

What is the solution to keep growing in Aquaculture but not polluting environment and create a circular economy

One and Only solution for the situation what we face now where we can still have Sustainable Harnessing of Fisheries Balancing Conservation and Industry Growth is Biofloc Technology.

My Message

Eat whatever you want BUT eat responsibly

Demand whatever you want to eat BUT compromise on environmental safety

Do Aquaculture BUT do it responsibly

Intensify your production system BUT do it responsibly.

We have to protect the right of future generations also to live, we cannot ruin their future by damaging the environment today.

Aquatic Jewel of Amboli: Schistura hiranyakeshi and India's First Fish-Dedicated Biodiversity Heritage Site

Krishna Patil^{1*}, Omkar Patil², Swapnil Ghatge³

¹Ph D Scholar, College of Fisheries, Ratnagiri, Maharashtra ²UG Scholar, College of Fishery Science, Udgir, Maharashtra ³ Associate Professor, College of Fishery Science, Udgir, Maharashtra

India is abode to rich bio diverse flora and fauna spanning through the landmass from the towering Himalayas to Kanyakumari, with over 7% of the world's recorded species and varieties of endemic plants and animals. Protection of these invaluably rich treasures is need of the hour (Goyal & Arora, 2009). Indian Government have enacted the Biological Diversity Act, 2002, which empowers states to declare areas of significant ecological value as Biodiversity Heritage Sites (BHS) and are legally recognised under Section 37(1). These BHS sites are not just reservoirs of flora and fauna, but also carry deep cultural, historical, and ecological significance often shaped by centuries of human-nature interaction.

These NHS sites are well-defined areas that are ecologically fragile, rich in wild and domesticated species, and often include rare, endemic, threatened, or keystone species. They may also feature ecosystems of evolutionary significance, fossil records, or hold aesthetic, cultural, or ethical value. Unlike national

This article highlights the ecological and cultural significance of the Amboli region in Maharashtra, focusing on the recent discovery of Schistura hiranyakeshi and its unique recognition under India's Biodiversity Heritage Site framework. It also emphasizes the role of sacred ponds and community-driven conservation efforts in the Western Ghats.

parks or wildlife sanctuaries, BHSs are managed decentralised, in consultation with local communities and stakeholders, allowing sustainable use and the continuation of traditional practices, with voluntary restrictions if agreed upon by local bodies (http://nbaindia.org/).

The first BHS was the Nallur Tamarind Grove in Bengaluru, Karnataka, which was declared in 2007 and is known for its ancient tamarind trees and cultural heritage (http://nbaindia.org/). Over time, the list

has grown to include sacred groves, wetlands, hill ecosystems, lateritic plateaus, and rare forest patches. As of May 2025, India has notified 47 Biodiversity Heritage Sites across 16 states (Table 1), each with its unique ecological narrative. But among all these, Amboli in Maharashtra holds a special place, as the first BHS in India dedicated to a fish species (Government of Maharashtra, 2021).

Amboli lies in the Northern Western Ghats Biodiversity Hotspots in the Sawantwadi Tehsil of Sindhudurg district. In 2021, a small yet ecologically significant area of 2.11 hectares near the origin waters of the Hiranyakeshi River — including a sacred pond adjacent to the Mahadeo (Lord Shiva) temple — was notified as a Biodiversity Heritage Site (Government of Maharashtra, 2021). This move recognised the discovery of a new freshwater fish species, Schistura hiranyakeshi, which was found exclusively in this microhabitat. The discovery contributed significantly to documenting new species in the Western Ghats. Named after its genus, Schistura, and the

Fig. 1 The pond of the Sri Hiranyakeshi temple, the only known locality & Schistura hiranyakeshi

Hiranyakeshi River, this freshwater loach is a small, oxygen-loving fish found in clear, fast-flowing spring waters. The naming also pays homage to the local deity and temple, underscoring this region's close ties between biodiversity and cultural tradition.

The species limited distribution and habitat sensitivity highlight the urgency of its conservation, especially as freshwater ecosystems are among the most endangered in the world. The Amboli BHS is not just about a single fish species; it reflects the broader ecological richness of the region. The area is surrounded by cloud forests, lateritic plateaus, and the rare Myristica swamp ecosystem, one of the last remnants of a prehistoric wetland forest, now found only in three known locations across India. These swamps support a unique biodiversity assemblage and act as vital water regulators in the monsoon-drenched Western Ghats. The designation of Amboli as a Biodiversity Heritage Site serves multiple purposes. It protects an ecologically fragile ecosystem and recognises the value of local conservation traditions, particularly those linked to temple ponds and sacred springs. The advantage of BHS status is that it does not impose stringent restrictions but works in harmony with local communities to promote sustainable development, eco-tourism, and awareness-building. Amboli has become a model for community-led conservation, where spiritual reverence and scientific discovery converge.

The BHS framework promotes a bottom-up approach to conservation. Rather than topdown enforcement, it encourages voluntary protection measures, local livelihood enhancement, and education initiatives to build a sense of stewardship. It is a reminder that biodiversity conservation concerns large charismatic megafauna like tigers and elephants, and small, lesser-known species equally vital to ecological balance and cultural identity.

Amboli is now the fifth Biodiversity

Table 1. Biodiversity heritage sites of India

Sr. No.	Biodiversity Heritage Site	Area (ha)	District & State
1.	Majuli River Island	87500	Majuli, Assam
2.	Borjuli Wild Rice Site	0.41	Sonitpur, Assam
3.	Hajong Tortoise Lake	526.78	Dima Hasao, Assam
4.	Purvatali Rai	0.73	North Goa, Goa
5.	Sacred Grove at Sural Bhatori Monastery	0.6	Chamba, Himachal Pradesh
6.	High Altitude Meadow, HudanBhatori	8.74	Chamba, Himachal Pradesh
7.	Birch-pine Forest Patch, Nain Gahar	12.22	Lahaul&Spiti, Himachal Pradesh
8.	Nallur tamarind groves	21.85	Bengaluru, Karnataka
9.	Hogrekan	1015	Chikmagalur, Karnataka
10.	University of Agricultural Sciences, GKVK Campus	167	Bengaluru, Karnataka
11.	Ambaragudda	3857.17	Shimoga, Karnataka
12.	Asramam	57-33	Kollam, Kerala
13.	Naro Hills	200	Satna, Madhya Pradesh
14.	Patalkot	8367.49	Chhindwara, Madhya Pradesh
15.	Amarkantak	7681.5	Anuppur, Madhya Pradesh
16.	Glory of Allapallii	6	Gadchiroli, Maharastra
17.	Bambarde Myristica Swamps	2.59	Sindhudurg, Maharastra
18.	Ganeshkhind Garden	33.01	Pune, Maharastra
19.	Landorkhori	8.08	Jalgaon, Maharastra
20.	Schistura hiranyakeshi	2.11	Sindhudurg, Maharastra
21.	Dialong Village	1135	Tamenglong, Manipur
22.	Khlaw Kur SyiemKmielng	16.05	Ri-Bhoi, Meghalaya
23.	Mandasaru	528	Kandhamal. Odisha
24.	Mahendragiri	4250	Gajapati, Odisha
25.	Gandhamardan Hill	18964	Bolangir and Bargarh, Odisha
26.	TungkyongDho	0.065	North Sikkim, Sikkim
27.	Arittapatti	193.215	Madurai, Tamil Nadu
28.	Ameenpur Lake	229.05	Sangareddy, Telangana
29.	Gharial Rehabilitation Centre	10	Lucknow, Uttar Pradesh

Sr. No.	Biodiversity Heritage Site	Area (ha)	District & State
30.	Baramura waterfall	150	Khowai, Tripura
31.	Unakoti	40	Unakoti, Tripura
32.	Silachari Caves	100	Gomati, Tripura
33.	Debbari or Chabimura	215	Gomati, Tripura
34.	Betlingshib and its surroundings Tonglu	350	North district, Tripura
35.	Tonglu	230	Darjeeling, West Bengal
36.	Dhotrey	180	Darjeeling, West Bengal
37.	Chilkigarh Kanak Durga	22.62	Jhargram, West Bengal
38.	State Horticulture Research and Development Station	39.61	Nadia, West Bengal
39.	Char Balidanga	46.862	Nadia, West Bengal
40.	Amkhoi Wood Fossil Park	10 0.667	Birbhum, West Bengal
41.	Baneswar Shiva Dighi	0.667	Coochbehar, West Bengal
42.	NamthingPokhari	4.819	Darjeeling, West Bengal
43.	Birampur-BaguranJalpai	95.91	Purba Medinipur, West Bengal
44.	Haldir Char Island	4.73	Purba Medinipur, West Bengal
45	Gupteswar Forest	350	Koraput, Odisha
46	Lyago	1.24	Lower Subansiri, Arunachal Pradesh
47	Thungeey Gonpu	6.27	West Kameng, Arunachal Pradesh

Heritage Site in Maharashtra, joining the ranks of Glory of Allapalli (Gadchiroli), Landor Khori Park (Jalgaon), Ganeshkhind (Pune), and the Myristica Swamps (Sindhudurg). Each site showcases Maharashtra's rich and diverse natural heritage, from dry deciduous forests to sacred groves and swamp forests. However, Amboli stands apart as a symbol of freshwater biodiversity conservation, an area often underrepresented in India's conservation priorities.

In conclusion, the Amboli Biodiversity Heritage Site represents a powerful example of inclusive conservation, where scientific research, community engagement, and traditional beliefs come together to protect a unique ecosystem. Such models offer hope and direction in an era marked by rapid ecological degradation and climate change. Protecting Schistura hiranyakeshi is not just about saving a fish it's about preserving a living heritage, ensuring that our rivers, springs, and forests continue to support life in all its vibrant forms.

More such species specific freshwater BHS sites shall be identified in the vast forest areas of Maharashtra state in order to conserve the valuable fish resources along with the ecosystem for the future generations to come.

References:

Goyal, A. K., & Arora, S. (2009). India's fourth national report to the convention on biological diversity. Ministry of Environment and Forests, Government of India, New Delhi, 75, 143.

Praveenraj, J., T. Thackeray and S. Balasubramanian. (2020). Schistura hiranyakeshi a new loach (Cypriniformes: Nemacheilidae) from Maharashtra, northern Western Ghats, India. aqua, International J. Ichthyol. 26(2):49-56.

Government of Maharashtra. (2021, March 31). Notification: Declaration of Schistura hiranyakeshi habitat at Amboli as Biodiversity Heritage Site under Biological Diversity Act, 2002 [Government notification No. WLP-03.21/CR-75/F-1]. Revenue and Forests Department, Government of Maharashtra.

Read and Advertise in

Aqua International

English Monthly Magazine

Annual Subscription Cost:Rs. 800

SCAN QR CODE

and pay towards Subscription charges to Aqua International, English monthly

Payment may also be sent by online transfer

To subscribe, Contact:

NRS Publications

BG-4, Venkataramana Apartments, 11-4-634, A.C. Guards, Hyderabad - 500 004, Telangana, India. Tel: 040-2330 3989 • Mobile: 96666 89554 Email: info@aquainternational.in

Establishing a National Fisheries Council in Bangladesh:

A Strategic Imperative for Sustainable Aquaculture

Md Abu Kawsar, Doctoral Researcher, Chinese Academy of Science & Assistant Professor, Department of Aquaculture, Sylhet Agricultural University, Bangladesh

Bangladesh ranks as the world's fifth-largest aquaculture-producing country, playing a vital role in national food security, rural livelihoods, and economic growth. However, the sector suffers from weak regulation, fragmented oversight, antibiotic misuse, and poor farm-level practices. This article highlights the urgent need for establishing a National Fisheries Council- a professional, multi-stakeholder body that can guide sustainable aquaculture development through better regulation, professional certification, disease control, ethical standards, and coordinated policy implementation. Drawing on international models and the growing demands of the fisheries sector, the article proposes a roadmap for building the council and outlines the key benefits it would bring to ensure a safer, more accountable, and globally competitive aquaculture industry in Bangladesh.

HIGHLIGHTS:

- ▶ Proposes the formation of a National Fisheries Council in Bangladesh to regulate and professionalize the aquaculture sector.
- ► Highlights critical issues such as antibiotic misuse, weak governance, and lack of coordinated oversight.
- ▶ Outlines the Council's key roles including professional certification, policy implementation, ethical regulation, and disease management.
- Presents a stepwise roadmap for establishing the Council, drawing lessons from international models.
- ▶ Emphasizes the Council's potential to ensure safer aquaculture products, protect public health, and support sustainable sectoral growth.

Keywords: Bangladesh Fisheries Council; Aquaculture Governance; Bangladesh Fisheries Sector; AMR; Sustainable Fish Farming. **Introduction:**

Bangladesh stands proudly among the world's top fish-producing nations, ranking as the 5th largest aquaculture-producing country, and has emerged as a cornerstone of food security, rural livelihoods, and export earnings (FAO, 2022). However, despite this impressive growth, aquaculture in Bangladesh remains poorly organized and weakly regulated, facing major problems

Trends in Aquaculture Production and Fishery Trade Over Time (Mamun et al., 2022) 210,993 MT Aquaculture (FY1990-91) Production Increased → 2,731,070 MT USD 376.71 million Fishery (FY2000-01) **Export Value** Increased → USD 601,59 million USD 40.89 million Fish Import (FY2015-16) Value → USD 33.82 million Decreased

Figure 1: Trends in Aquaculture Production and Fishery Trade in Bangladesh

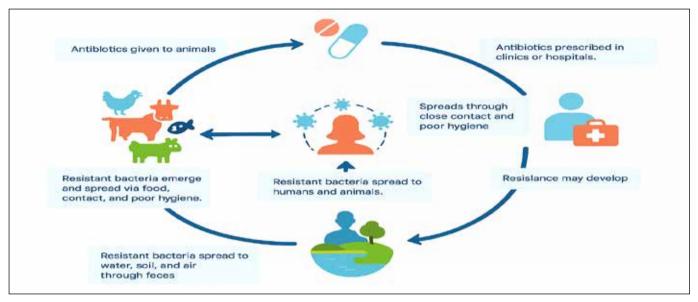


Figure 2: Pathways of antibiotic resistance transmission

such as frequent disease outbreaks, poor farm hygiene, overuse of antibiotics and weak enforcement of rules and regulations (Kawsar et al., 2022). Although aquaculture plays a vital role in the national economy, there is still no dedicated central authority to oversee, coordinate, and regulate its practices nationwide unlike the well-structured system in the veterinary sector. This absence has led to inconsistencies in farming standards, a lack of accountability, and growing threats to public health and the environment. In response, the formation of a Bangladesh Fisheries Council is no longer just an idea it is an urgent necessity. Such a body could unify the sector under a shared vision, enforce good aquaculture practices, and guide Bangladesh toward a safer, more sustainable, and globally competitive aquaculture future.

The Growing Importance of Aquaculture in Bangladesh

Aquaculture has become one of the fastest-growing industries in Bangladesh. The country produces 2.73 million metric tons of fish annually, with over half of this coming from aquaculture (Figure 1) (Mamun et al., 2024). Fish contributes to over 60% animal protein in the diet and supports millions of people through direct and indirect employment (Hossain, 2014). However, this rapid growth highlights the need for improved planning and regulatory

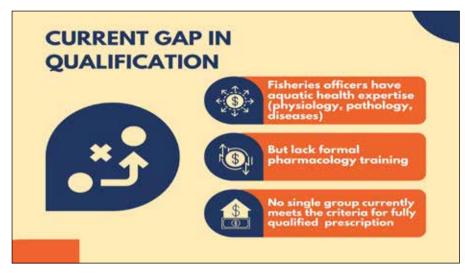
oversight. Intensive fish and shrimp farming has increased the demand for inputs like antibiotics and chemicals many of which are used without proper knowledge or supervision (Kawsar et al., 2022).

The Problem: A Sector Without a Central Guiding Body

Currently, aquaculture in Bangladesh is managed by a combination of institutions, including the Department of Fisheries (DoF), fisheries research organizations, local government bodies, and various nongovernmental organizations (NGOs). However, the absence of a dedicated unified authority has resulted in a fragmented system marked by overlapping responsibilities, inconsistent policies, and weak enforcement. Several critical issues have been identified under this uncoordinated structure:

- Excessive input use such as feed, fertilizer, and chemicals has led to frequent disease outbreaks and mass mortalities in farmed fish.
- Farmers commonly use antibiotics without proper guidance, contributing to the development of antimicrobial resistance (AMR) in both aquatic animals and the surrounding environment.
- There are no clearly defined national guidelines or legal frameworks governing the responsible use of antibiotics in

aquaculture.


- 4. Unauthorized individuals, lacking scientific knowledge, frequently advise farmers on antibiotic and drug use, leading to misuse.
- Good Aquaculture Practices (GAP) are not widely understood or followed by many farmers, increasing disease risks and reducing product quality.
- Biosecurity measures are poorly implemented and rarely monitored, making farms highly vulnerable to infectious disease outbreaks.

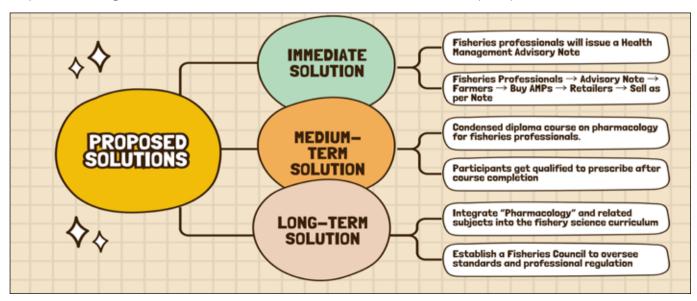
Public Health and Environmental Risks

The misuse of antibiotics in fish farming doesn't just affect aquatic animals, it also threatens human health (Figure 2). Residues in fish products can contribute to antimicrobial resistance (AMR), while untreated waste pollutes water bodies, harming ecosystems. In Bangladesh, bacteria from farmed fish and shrimp are becoming increasingly resistant to antibiotics such as tetracycline, ciprofloxacin, and amoxicillin, making future infections harder to treat (Hossain et al., 2018).

What is a Fisheries Council?

A National Fisheries Council would be an independent, multi-stakeholder body responsible for overseeing and guiding the sustainable development

Figure 3: Current expertise and gaps in qualification of the graduates


of aquaculture and fisheries in Bangladesh. Considering the growing complexity, increasing professional demands, and evolving regulatory needs of the aquaculture sector, the establishment of a Fisheries Council is both timely and essential. This council would serve as the central professional authority for the registration, regulation, and capacity development of fisheries graduates, extension officers, and aquaculture professionals across the country. Its establishment would bring muchneeded coordination and structure to the sector. The core powers and functions of the proposed Bangladesh Fisheries Council would include:

1. Registration, certification, and professional regulation of fisheries

- graduates, extension officers and aquaculture professionals ensuring legal recognition of their qualifications and safeguarding their professional rights and benefits.
- 2. Monitoring and upgrading the quality of fisheries education, research, and services.
- 3. Formulating, supervising, and implementing codes of professional conduct and ethical standards for aquaculture practitioners.
- 4. Help to designing and reviewing the fisheries curriculum, upgrading degree standards, and developing internship and hands-on training frameworks.

- 5. Accrediting educational institutions offering fisheries programs based on predefined quality standards.
- 6. Evaluating and recognizing foreign degrees or diplomas in fisheries science for equivalence and professional acceptance in Bangladesh.
- 7. Organizing capacity-building programs and specialized training to improve professional skills.
- 8. Developing work plans for continuous professional development (CPD) of fisheries graduates.
- 9. Fixing registration, renewal, and service fees as required, and executing administrative functions under the framework of the law
- 10. Taking legal and disciplinary actions against unprofessional conduct or unethical practices in the fisheries sector.
- 11. Executing any other responsibilities and auxiliary functions necessary to achieve the council's objectives, as defined by applicable rules and regulations.

By institutionalizing such a council, Bangladesh can build a more professional, ethical, and accountable aquaculture and fisheries workforce. Countries such as the Philippines (PCAF),

Figure 4: Proposed solution inspired by DGHS

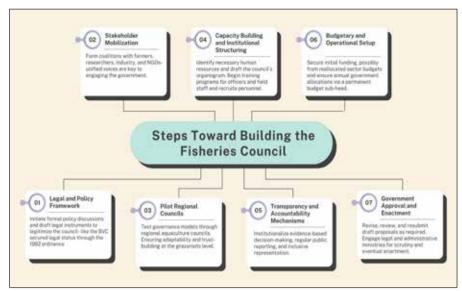


Figure 5: Stepwise roadmap for establishing Bangladesh Fisheries Council

Canada (FCC), Kenya (KeFAC), Scotland (SCF), and Norway (NSC) already operate national fisheries or aquaculture councils/boards that provide regulatory oversight and promote responsible practices. To safeguard the future of the sector, Bangladesh must now take a similar step.

Benefits of a National Fisheries Council

Establishing a National Fisheries Council in Bangladesh would bring a wide range of benefits both for the aquaculture sector and for national development. Key benefits include:

Stronger Regulation and Professional Oversight

The Council would standardize the registration and certification of fisheries professionals, including graduates, and extension officers. This legal recognition would ensure accountability, reduce malpractice, and protect the rights and responsibilities of practitioners nationwide.

• Effective Disease and Antibiotic Management

Through structured training and policy oversight, the Council could reduce antibiotic misuse and promote responsible practices like probiotics and biosecurity. It would also support the establishment of diagnostic labs and monitoring systems to prevent disease

outbreaks.

Safer Aquaculture Products By enforcing ethical guidelines and proper withdrawal periods, and encouraging the use of certified professionals, the Council would contribute to safer fish products free from harmful residues ensuring public health and

Stronger Institutional Coordination

consumer trust.

Acting as a centralized body, the Council would reduce fragmentation among stakeholders. It would serve as a bridge between academia, farmers, the private sector, and government—ensuring better policy implementation, research integration, and knowledge transfer.

Legal and Ethical Accountability
 With clear authority to monitor
 conduct and enforce disciplinary
 actions, the Council would help
 uphold professional ethics
 and reduce misinformation or
 exploitation by unauthorized
 advisors in the sector.

Core Guideline:

Aqua drugs should only be recommended by fisheries professionals or qualified personnel who are educated and experienced in aquatic animal health and disease management. While these professionals are responsible for

prescribing treatment regimens—including dosage, intervals, duration, and withdrawal periods—they often lack formal training in pharmacology (Figure 3). Currently, 17 universities in Bangladesh offer graduate degrees in fisheries science, and some have already incorporated fish pharmacology into their academic curricula. To address this gap, a phased approach is proposed, consisting of immediate, mediumterm, and long-term solutions (Figure 4).

Steps Toward Building the Council

To establish a Fisheries Council, a stepwise approach is proposed (Figure 5). It includes developing a legal framework, mobilizing stakeholders, piloting regional councils, and building institutional capacity. Transparent governance, budgetary planning, and iterative government engagement are essential for formal approval and sustainable operation.

Concluding Remarks

The growth of aquaculture in Bangladesh is a national success story but its long-term sustainability depends on how well it is governed. Without coordinated oversight, the industry risks becoming a source of environmental damage, health hazards, and lost economic opportunity. The time to act is now. A National Fisheries Council can provide the leadership, structure, and strategy needed to turn Bangladesh's aquaculture sector into a global model of sustainable development.

References:

Directorate General of Health Services (DGHS). Guidelines for the control of aquaculture medicinal products (AMPs). Retrieved June 12, 2025, from https://dghs.portal.gov. bd/sites/default/files/files/dghs.portal. gov.bd/page/590ba637_9dca_49f8_ bfb7_65c6f2f4bbao/2025-04-10-05-41-8b72ea97d911080ad5749fa6926 2b569.pdf

More references can be given on request

SOLUTION FOR SUSTAINABLE AQUA CULTURE....

Our Products are Registered with CAA as Antibiotic-free Aquaculture Inputs

Manufactured & Marketed by

FECPI India Pvt. Ltd.

Regd. off: Sy No. 94/1A1, Ground Floor Vanagaram-Ambattur Road, (Next To Apollo Hospital), Ayanambakkam, Chennai - 600095 Email: info@fecpi.in Visit us at: www.fecpi.in

Visit us at : www.fecpi.in

Ecological Role of Virophages

Mohit¹, Avneesh Singh¹, Lavish Saran¹, Litha Cerbal V², Shiwam Dubey²

¹College of Fisheries Science, Hisar, Haryana

²College of Fisheries, Mangaluru Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, Karnataka

Abstract

Virophages are a unique class of viruses that parasitize other viruses, specifically giant viruses such as mimiviruses and phycodnaviruses. These viruses, which are typically circular double-stranded DNA (dsDNA) entities, rely on the replication machinery of their host viruses to propagate. Virophages infect host cells that are already infected by a giant virus, using the viral factory of the giant virus for their own replication. First discovered in 2008 with the Sputnik virophage, this remarkable discovery has opened new avenues of research into virus-virus interactions and viral ecology. This article explores the biology, life cycle, ecological significance, and potential applications of virophages, highlighting their role in viral ecosystems and suggesting future directions for research in virology and medicine.

Keywords: Virophages, giant viruses, mimivirus, parasitism, Zamilon and microbial ecosystems

Protect microbial hosts (e.g., algae, amoebae) from lytic viral infections.

Help maintain balance in microbial

ecosystems.

Influence nutrient cycling, especially carbon and nitrogen turnover in aquatic systems.

Contribute to the stability and productivity of marine and freshwater ecosystems.

Drive evolutionary interactions among viruses, hosts, and virophages.

Introduction of Virophage:

A virophage is a type of small virus that infects and parasitizes larger viruses, specifically giant viruses that themselves infect host cells (like amoebae). In simple terms, a virophage uses the replication machinery of a giant virus and the host cell it infects to make copies of itself, often interfering with or harming the giant virus in the process. In contrast to ordinary viruses that infiltrate host cells on their own, virophages reproduce by using the machinery of "giant viruses" such as the mimivirus (La Scola et al., 2008). The 2008 discovery of the Sputnik virophage marked the introduction of the idea of virophages into the scientific literature. An amoeba infected with the

mimivirus, one of the biggest viruses ever discovered, contained Sputnik (Desnues et al., 2008). In contrast to ordinary viruses that infiltrate host cells on their own, virophages reproduce by using the machinery of "giant viruses" such as the mimivirus. (La Scola et al., 2008).

Classification of virophage:

In terms of genome and particle size, virophages are at least as complex as members of several families of bona fide viruses with isometric capsids and dsDNA genomes, including Polyoma-, Papilloma-, Cortico-, and Tectiviridae, or podoviruses such as Bacillus virus phi29. The largest virophage genomes assembled from metagenomic datasets are comparable in size to adenoviral genomes.

Life Cycle of Virophage: 1. Entry into the Amoeba:

Sputnik virophage enters the amoeba Acanthamoeba castellanii in association with its predominant host, Mamavirus or Mimivirus. These large DNA viruses act as "helper viruses," facilitating the internalization of Sputnik. Upon entry, the amoeba

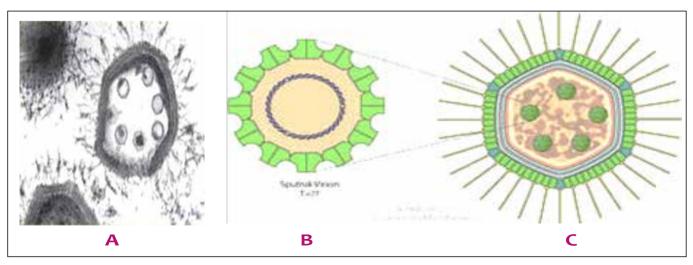


Fig. Virophage: (A) Sputnik inside the Mamavirus capsid (B) Schematic image of the virophage Sputnik and(C) its location in the Mimivirus Source: (https://microbewiki.kenyon.edu/index.php/Sputnik virophage).

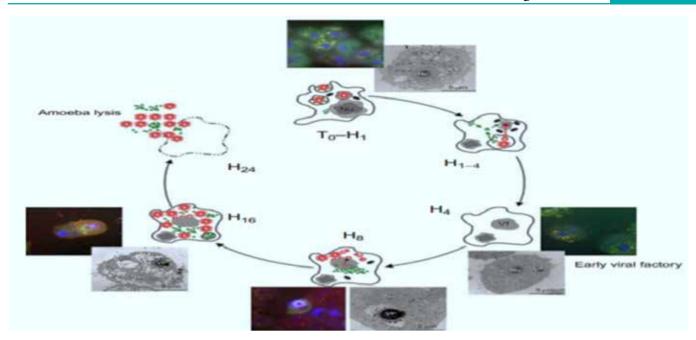


Fig: Life cycle of Mamavirus and Sputnik at T0-H1, H4, H8, H16, and H24. Immunofluorescence (IFF), and transmission electron microscopy (TEM) images are shown. Viral factory (Vf) and nucleus (Nu) are indicated. Source: (Desnues and Raoult, 2010).

phagocytoses the viral particles into vacuoles, where the Mimivirus or Mamavirus establishes its viral factory (La Scola et al., 2008).

2. Virophage Hijacking of the Viral Factory:

After entry, the host Mimivirus or Mamavirus begins constructing its viral factory, a specialized cytoplasmic site for replication and assembly of its progeny. Sputnik hijacks this machinery, using it for its own replication. This process interferes with the helper virus's replication and assembly, reducing its progeny yield and virulence (Fischer et al., 2010).

3. DNA Replication, Transcription, and Translation:

Sputnik virophage relies on the enzymes and resources provided by the viral factory to replicate its circular double-stranded DNA genome. Transcription and translation are carried out using the machinery and substrates hijacked from the Mimivirus or Mamavirus factory (Raoult et al., 2008). Sputnik genes encode proteins essential for its replication and assembly, bypassing the amoeba's own cellular machinery.

4. Assembly and Maturation:

Progeny Sputnik virions are assembled

within the viral factory of the helper virus. The capsid proteins self-assemble around the replicated Sputnik DNA, forming mature virions. This stage involves structural proteins encoded by Sputnik's genome (Yutin et al., 2013).

5. Production and Release of Progeny Virions:

Once mature, the progeny Sputnik virions are released as the amoeba lyses, coinciding with the release of Mimivirus or Mamavirus particles. This lysis results from the exhaustion of cellular resources due to viral hijacking. Notably, the presence of Sputnik reduces the fitness of the helper virus, highlighting its parasitic nature (Desnues et al., 2012).

6. Coinfection with Other Viruses:

Sputnik can coinfect A. castellanii along with multiple Mimivirus-like viruses, including Mamavirus. However, its efficiency and affinity vary depending on the host virus. While Sputnik's replication kinetics are similar within Mamavirus and Mimivirus, it shows a preference for Mamavirus due to higher affinity (La Scola et al., 2008).

Biological and Ecological Significance of Virophages

Virophages are small viruses that infect and impair the replication of giant viruses (like Mimiviruses) inside host

cells, usually amoebae. When both a virophage and a giant virus co-infect a host cell, the virophage hijacks the replication machinery provided by the giant virus to replicate itself often reducing the reproduction rate of the giant virus. They can protect host populations from the destructive effects of giant virus infections by attenuating host cell lysis. In aquatic ecosystems (oceans, lakes), virophages help regulate the population dynamics of giant viruses. This balance affects microbial mortality rates, nutrient cycling, and organic matter release influencing global biogeochemical cycles (e.g., carbon cycling).

Conclusion

Our knowledge of microbial ecosystems and viral interactions has changed dramatically since the discovery of virophages. As "viruses of viruses," virophages offer an intriguing illustration of parasitism in the viral realm. In addition to upending established virus-host dynamics, their reliance on big viruses for reproduction adds significant complexity to viral ecology and evolution. Future studies must concentrate on comprehending the complex relationships that exist between large viruses, virophages, and their eukaryotic hosts.

Tiger Shrimp-Brackishwater Finfish-Mangrove Polyculture in Mitigation of Climate Change-induced Coastal Flooding

Subrato Ghosh; Kolkata, West Bengal; Email: subratoffa@gmail.com

HIGHLIGHTS:

Since 2001, often questions are raised against increasing trend of illegal & unregulated shrimp cultivation and conversion of mangrove areas to commercial shrimp farms in coastal regions (Blocks) of West Bengal, Odisha and Andhra Pradesh. Recently emphasis is given on preserving and restoring mangrove habitat and its protection. Integrated Mangrove Aquaculture (IMA), with shrimp and mangrove trees existing and growing in the same time and place, is an environment-friendly idea put into reality having beneficial impact. It is a novel initiative taken

by Kolkata-based NGOs in North 24 Parganas district near to Sundarbans region since 2019. Observations management practices followed at chemical-free IMA sites of progressive brackishwater aquaculturists by profession Sri Pintu Kumar Das and Sri Saheb Ali Mondal are presented in this writeup, compiled on World Mangrove Day 26/07/2025, emphasizing on commendable work done by Sri Mondal on promoting organic shrimp production. Conversation was made in great detail with both persons at their farm site on 24/05/2025.

Author with Sri Pintu Kr. Das

Integrated Mangrove Aquaculture – a novel approach

Integrated Mangrove Aquaculture (IMA) is the practice of farming of P. monodon and brackishwater finfishes in integrated way (i.e., in polyculture system) in the presence of mangrove trees sown on inner side of pond embankments around same IMA farm and periphery of aquaculture water bodies. When leaves (thicker than normal terrestrial plants) shed from grown-up mangrove trees, it falls over water body, decompose and form detritus ('leaf litter'; organic matter produced by decomposition of leaves) - thereby increase fertility of water by providing more nutrients. In this practice, water in IMA plots remain in good and purified condition, leaves of the plants are thick and don't pollute the water. Mangrove trees play an important role in capturing and storing carbon dioxide from atmosphere, which helps in reducing greenhouse gas concentration - thereby mitigate the effects of global warming.

Since year 2019, IMA technology has been started in brackishwater aquaculture areas at Minakhan, Joygram and Chaitalhat villages in Minakhan Block, and Andulpota and Sadiknagar villages in Basirhat-2 Block in North 24 Parganas. In the context of cyclonic storms 'Aila' (May 25, 2009), 'Amphan' (May 19-20, 2020), 'Bulbul' (November 9-10, 2019), 'Yash' (May 25-26, 2021) and spring tides affecting the areas located in close vicinity of Indian Sundarbans, mangrove trees play a significant

role. Intensity of such storms in North and South 24 Parganas districts is expected to increase in days to come. Root system of mangrove trees help to stabilize the embankment soil of brackishwater aquaculture plots and serves as natural barrier against severe storm, thereby preventing significant loss of brackishwater aquaculture crops during adverse climatic conditions. As embankment on four sides is strengthened, its erosion is prevented during incidences of supercyclone,

Part of IMA plot of Sri Mondal

with Photosynthetic Formula POND CONDITIONER

A Unique Combination of Live Multi-strain SOIL and WATER Probiotic

CAA Regn. No. CAA/MAY18/PRO/01684

Organic & Inorganic Minerals

- Growth of Plankton
- Controls Body Cramp
- Pond Water Mineralization
- Shell Formation

CAA Regn. CAA/MAR2023/FA/04601

email: info@hitechpharma.co Cust. care No.: +91 97010 22555 website: www.hitechpharma.co

Sri Mondal in a Seminar at Hyderabad

A foreign expert at Sri Mondal's farm

Author with Sri Saheb Ali Mondal

flood and climate change-induced (environmental) disasters.

As climate-adaptive modifiedextensive brackishwater aquaculture technology, IMA Project is implemented at farm sites of some progressive brackishwater fish farmers (as beneficiaries) in North 24 Parganas, West Bengal by reputed non-Government scientific organizations namely Nature **Environment and Wildlife Society** (NEWS), Kolkata; Sustainable Aquaculture in Mangrove Ecosystem (SAIME), an initiative of NEWS; Global Nature Fund (GNF); Blue Sea Aquaculture Private Limited; Naturland; Bangladesh Environment and Development Society (BEDS). Sri Sourabh Kumar Dubey and three coauthors have described the strategy and concept of IMA in their article 'A pilot of integrated mangrove

aquaculture as a nature-based solution to mitigate climate change in West Bengal', published in Vol. 26 No. 4 (Year 2022) of Aquaculture Asia magazine.

My field observations on IMA

During June and July 2022 and May 2025, I had visited farm sites of four beneficiaries under IMA Project; they are: 1) Sri Achintya Mondal, Vill. Minakhan, Minakhan Gram Panchayat (GP), Minakhan Block (Area: 1.04 hectare, water depth o.9m); 2) Sri Sankar Baj, Vill. Joygram, Minakhan GP, Minakhan Block (Area: 1.15 hectare, water depth 0.9-1.4m; both doing IMA since June 2022); 3) Sri Pintu Kr. Das, Vill. Chaitalhat, Chaital GP, Minakhan Block; 4) Sri Saheb Ali Mondal, Vill. Andulpota, Rajendrapur GP, Basirhat-2 Block (near to Basirhat town). My aim was to know the present state-of-art

and steps of management of IMA from progressive and experienced brackishwater fish farmers who are practicing IMA with financial and technical support of NEWS and other organizations, and know the benefits of IMA strategy for mitigating the impact of climate change-induced disaster (in the form breaching of embankments and saline water intrusion in brackishwater aquaculture plots during incidences of intense storm & supercyclone, accompanied by spring tide and flooding).

I presented my observations concerning the management practices followed at IMA sites of Sri Achintya Mondal and Sri Sankar Baj in my article 'Present status of medium-saline bheri fishery and integrated mangrove aquaculture in West Bengal: a short study Part-2', published in Vol. 27 No. 2 (Year 2023) of Aquaculture Asia magazine.

Commercially-important finfish, shellfish and mangrove species cultured and produced in wellmaintained IMA plots

The finfish and shellfish species include Liza parsia, Liza macrolepis, Liza tade, Macrobrachium rosenbergii, P. monodon, sex-reversed all-male Tilapia nilotica, Lates calcarifer (seldom used), Metapenaeus monoceros, Metapenaeus brevicornis, Mystus gulio. For the first seven species, riverine and hatchery-produced seeds are procured and stocked in IMA plots. For the last three species, auto-stocking occurs, along with tidal river water of Bidyadhari and Ichhamoti. The mangrove plants planted and grown

Another species of mangrove tree

Sri Mondal with scientists from MPEDA

in IMA plots include Rhizophora apiculata ('gorjon'), Heritiera fomes ('sundori'), Sonneratia apetala ('keora'), Nypa fruiticans ('golpata'), Avicennia sp ('Baeen'; three species), Xylocarpus granatum ('dhudhul'), Bruguiera gymnorhiza ('kankra').

IMA farmer Sri Pintu Kumar Das Sri Das's IMA plot is 1.60 hectare in effective water area, water depth o.9-1.2m; he is doing IMA since June 2022. He does P. monodon stocking from December-January every year, 20mm size seeds that costs Rs 3000-4000 / 10000nos, stocking density 1000nos / o.13ha. These are first stocked in small earthen chambers inside plot, size gained 5-6cm in 20-25 days, thereafter it enters into main plot. Newly-bought seeds stocked again after 21 days, done 3-4 times every year. Size becomes 25-35g in 90-110 days, harvesting begins from 90th day during full moon and new moon period.

L. parsia seed stocking is done by him during January to April, 10000-12000nos in 1 kg, costing Rs 3000-4000 / kg, total 3kg stocked in plot.

Mangrove tree at Sri Das's IMA farm

Sri Mondal and an aquaculture expert from Romania

Harvesting done during October to December, 40-50g in size (20-25 nos / kg). L. tade seeds 72-84mm at stocking, total 1000nos, Rs 8 / piece. Marketable-sized ones harvested in December at 500-700g body weight. Milkfish Chanos chanos seed size 1-2cm, brought from Chennai and stocked. Harvesting done at advanced fry stage, 60-90mm, supplied to interested grow-out fish farmers in nearby region. M. rosenbergii PL stocking done in May-June, 24-36mm size, total 2000nos stocked, that costs Rs 500-600 / 1000nos. Harvesting done in December after dewatering the plot when it is allowed to dry, at 50-60g size. Indian major carp fingerlings 100-200g size, stocked only in small numbers in June-July with onset of rainfall - harvested in next 3-4 months at 600-700g weight. Sri Das's mangrove plants are in good condition, have attained good height, and will grow further.

IMA farmer Sri Saheb Ali Mondal

Sri Mondal's IMA plot at Andulpota is 27 hectare in area, water depth 0.9-1.2m, involved in brackishwater aquaculture since 2010. He is doing IMA since June 2019 in two large brackishwater plots each at Basirhat-2 Block and Haroa Block, total 40 hectare. He is Leader of both Andulpota Brackishwater Fish Production Group and Andulpota Aqua-Farmers Welfare Society. In July 2021, food and relief materials were provided by him to villagers who were badly affected due to Yash supercyclone that hit the region. He is doing farming of L. parsia, L. tade, L. macrolepis, M. gulio, L. calcarifer, M. gulio, M. monoceros, M. brevicornis and

Sri Pintu Kumar Das at his IMA Plot

M. rosenbergii. Sri Saheb Ali Mondal is the first person in West Bengal to initiate brackishwater aquaculture in association with mangrove trees with NGO support; slowly and steadily encouraging and guiding many other farmers to do the same. He is the first person in India to get license from MPEDA, Govt of India on production and export of organic P. monodon.

Aquaculture experts and representatives from Government of West Bengal, Government of India and eight countries of the world have visited his farm site. He has taken initiative in spreading (among villagers in general) the importance of mangrove trees to human health and welfare, have acquainted common people with the grown-up trees, their identification and important features. Mangrove saplings, planted on embankments of his fish farm in 2018-2019, have now become fully grown trees.

Important features of IMA practiced in North 24 Parganas district

Mangrove tree on embankment

Another species of mangrove sapling

- Mangrove leaf litter, benthic algae, periphyton growth over submerged aquatic weeds and over portion of pneumatophores below water level serve as natural food matter (basic food) for growing shrimp and finfishes.
- 2. Low density stocking of *P.*monodon and finfishes is
 maintained no incidences of viral
 diseases observed.
- It is an 'Organic' approach of aquafarming - use of commercial fertilizers, antibiotics, chemical compounds and commerciallyavailable formulated feed is completely avoided.
- 4. Farmers believe that if unfortunately production of *P. monodon* goes down unexpectedly due to diseases, production and sale of marketable-sized healthy finfishes and *M. rosenbergii* produced will compensate for the loss.
- 5. IMA practices aim to support the restoration of mangrove ecosystems.
- Total 37 farmers in Minakhan Block (35 in Chaitalhat, 1 each at Joygram and Minakhan villages) and 2 farmers in Basirhat-2 Block are doing IMA with technical and financial (partly) support of NGOs.
- 7. NGO representatives analyze and monitor essential water quality

- parameters in IMA water bodies of beneficiaries like Sri Das, Sri Mondal and others; growth of mangrove trees and carbon sequestration measure are also estimated.
- 8. Blue nylon net and split bamboo fencing set up around every IMA plot all along upto 1mt height to prevent entry of cattle and goats.
- In the years 2019 and 2022, mangrove saplings 30-60cm in height (4-10 months old) have been planted on inner sides of embankments of IMA water bodies.
- 10. Farm-made feed prepared for growing finfishes and shrimps using locally-available plant- and animal-based ingredients.
- 11. On-site meetings are organized every month between IMA farmers and Project personnel.
- 12. Coastal flooding near to
 Sundarbans region that cause
 breaching of pond embankments,
 introduction of unwanted fish
 species, worsening of water
 quality all are checked and do
 not take place in IMA plots of Sri
 Das and Sri Mondal.
- 13. For the IMA farmers, embankment repairment cost is saved at the beginning of every year due to plantation of mangrove saplings done 3-5 years back.

- These have now grown up (also with strong root system deep into embankment soil) with advancement of time.
- 14. Leaves of palm and date palm trees are placed over bottom soil, upon which periphyton is produced and also benthic algae it is used by growing shrimps as natural food source. These grow depending only on natural food produced by and over submerged aquatic weeds ('jhanjhee' in local dialect).

Other aspects of management practices

There is a growing interest on 'chemical free' fish and shrimp farming practice among farmers, who keep faith on organic-based fish farming - a new version of fish farming initiated at Basirhat Sub Division of North 24 Parganas district. There is no use of commerciallyavailable pelleted finfish or P. monodon feed. Fish farmers in this region are determined to continue organic fish farming to save next generation and secure healthy fish for them. The main organic produce is P. monodon. Brackishwater polyculture is practiced comprising mullets, M. gulio, L. calcarifer and giant freshwater prawn. Importance given on natural fish food production in water body in organic method to enhance plankton production, prestocking water body management.

Organic shrimps produced by Sri Mondal got a good standard and value in importing countries. Presently its selling price is Rs 600-800 / kg in local markets, but it is almost double (Rs 1500 / kg) in European Union and USA markets. It is beneficial and caused improvement in lives and livelihood of both brackishwater finfish and shrimp farmers as well as land owners (from whom Sri Das, Sri Mondal and others have taken the plot on lease for IMA). Application of fermented mohua oil cake Basia latifolia (for 16-18 days) and/or mustard oil cake before seed stocking helps in enriching planktonic population in water body. Lime is applied to build up Calcium in bottom soil. Taste of such marketablesized finfishes and P. monodon is excellent, also investment cost/cost of production is reduced on the part of farmers. IMA is an environmentfriendly approach and sustainable means of brackishwater finfish and shrimp farming. Dense periphyton growth occurs over submerged-type soft aquatic weeds, fed by growing fishes.

Sri Mondal's vast IMA plots in close vicinity of Sundarbans region is popular as 'mini-Sundarbans' to many people in Basirhat Sub-division including Andulpota village. It is a scenic beauty for nature lovers; a pollution-free, clean and quiet environment that exhibits Sri Mondal's love and care for nature. His initiative is unique that provokes curiosity to visitors - embankments of P. monodon-cum-brackishwater finfish farming water bodies beautified with fifteen species of big mangrove trees. Mustard oil cake is applied in IMA water bodies after 4 days of application of lime, before seed stocking. Thus, macro-algae like food matter is produced on the 15th day. Good quality of bottom soil maintained, environmental balance is secured.

In June 2024, team of experts from Romania and representatives of companies (related to shrimp industry) from farmed P. monodon importing countries have visited Sri Mondal's IMA plots at Basirhat-2 and Haroa Blocks to have a review of the farmers' practice of chemicalfree brackishwater aquafarming. They have examined the quality of P. monodon harvested from Sri Mondal's IMA plots, plankton density, important water and soil quality parameters, finfish and P. monodon harvesting methods. It will encourage Sri Mondal and associated brackishwater farmers to produce more for export.

Here, a mangrove-based environment created for sustainable P. monodon farming. At low stocking density, L. parsia is harvested by Sri Mondal at 40-80g size (riverine seeds, 5000-5500nos / kg at stocking), L. tade 350-800g (2.0-2.5 inch at stocking),

giant freshwater prawn 60-150g with pond-bred seeds brought from Purba Medinipur, harvest begins from August-September. P. monodon seed stocking done by him first in November-December, continues at 15-18 days interval; first harvest done in early-March. P. monodon 13-15 PL stocked first in nurseries, then reared in grow-out water bodies. Seeds brought from hatcheries in Chennai, Vizag, Odisha. The mullets and M. gulio exhibit slow growth, requires long culture duration and longer time for harvest.

End note

Presence of macroalgae and scattered thick masses of submerged green aquatic weeds with soft stems and small leaves, Najas graminea and Ceratophylum demersum are important in such extended brackishwater polyculture plots near the periphery and in the shallow regions, Sri Mondal stated. These prevent dissolved oxygen scarcity in water, absorb dirt and pollutants from water body through their roots and stems, and provide food and shelter for growing finfishes and shrimp. These are allowed to grow in low water column before stocking seeds. Mullets are herbivorous in their food and feeding habit. At the end of one year, dewatering is done in IMA plots and black topsoil is scrapped off at the areas of water body where shedding of mangrove leaves has occurred excessively. Mangrove trees give 100% pure oxygen. Good quality jaggery may be produced from Nypa fruiticans; pickle good in taste and concentrated liquid (edible juice) from Sonneratia apetala or 'Guti keora' tree.

The most important mangrove species Heritiera fomes grows upto 10-12 feet height in normal high saline conditions of Indian Sundarbans region, but found to grow to 22-23 feet tall at IMA plot of Sri Mondal, which is a semi-saline region. The other commercially-important brackishwater shrimp Litopenaeus vannamei cannot be produced organically because it depends only on commercially available pelleted feed. It is not stocked in IMA

plots. Sri Mondal aims to provoke consciousness among villagers about mangrove trees, create 'plasticfree' village, has sown mangrove saplings on his own in addition to that provided to him from the Project. He has visited many parts of India, in Bangladesh and Vietnam (twice each) and once to USA. Natural breeding of the brackishwater catfish M. gulio had occurred in favourable conditions in his IMA plots. He participated in National-level conferences organized by MPEDA, NFDB. In November 2022, MPEDA conducted its demonstration on giant prawn culture at Sri Mondal's

Previously there occurred transformation and conversion of some mangrove forest areas to shrimp aquaculture areas (ponds constructed) in or near to Indian Sundarbans region, which gave rise to certain unpleasing issues, environmental concern, socioeconomic conflicts. The mangrove trees at Basirhat-2 and Haroa Blocks in North 24 Parganas are nurtured and used to cultivate organic shrimp in the IMA farms. Mangrove trees are not cleared for shrimp farming; instead it is done in association with it. The mangrove ecosystem of Sundarbans is restored in this process, and 'brackishwater polyculture of shrimp combined with finfishes' is continued. On 01/11/2018, a team from USA along with senior officers from MPEDA visited Sri Mondal's IMA sites to see the management system, water bodies and the traps for harvest of P. monodon. Seeds are stocked 7-8 times in a year, harvested when high tide sets in; marketable-sized ones moves in opposite direction and caught in split bamboo traps placed underneath water surface and over bottom soil. IMA practice corroborates with a recommendation of 13th Indian Fisheries & Aquaculture Forum held in February 2024 that environmental degradation in fish/shrimp production systems needs to be critically addressed through modifications in culture practices. Author gratefully acknowledges the help received from Sri Milan Sinha, Fishery & Aquaculture Expert, NEWS, Kolkata.

Monsoon Management in Shrimp Farming:

A Comprehensive Guide for Indian Farmers

Ramachandran Elamparithy, Technical Head (Aqua), Skretting India

Monsoons challenge shrimp farmers with unpredictable conditions that demand timely and proactive farm management. From strengthening pond bunds and improving drainage systems to optimizing water parameters and adjusting feeding strategies, each step plays a crucial role in building a resilient and effective monsoon management plan.

Understanding India's Monsoon Patterns:

In India there are two different monsoon seasons affecting various part of the country.

- Southwest monsoon (June-September) begins over the Arabian sea near Lakshadweep and moves towards Kerala and other northern states of India. It brings rainfall to most parts of India except in some parts of Tamil Nadu and southern Andhra Pradesh.
- Northeast monsoon (October-December) brings most of the rainfall to Tamil Nadu and southern Andhra Pradesh, mainly due to cold northeastern winds and cyclones in the Bay of Bengal.

Timely tracking of monsoon forecasts through news channels or other media is essential for shrimp farmers to take necessary precautionary measures. Based on the seasonal patterns, farmers should plan and prepare their shrimp crops carefully to minimize the risk of contamination and disease. The monsoon impacts the pond environment physically, chemically, and biologically affecting the soil, water quality, and the health of shrimp and fish.

Precautionary Measures for Shrimp Farming During Monsoon:

Strengthening of pond bunds/ Dykes:

Before the onset of monsoon, the pond bunds should be strengthened, especially in loose soil and low-lying areas. Addition of sandbags in the weaker portion of the dykes and the peripheral bunds bordering canals, river systems or sea areas should be done to strengthen the bunds so that the bunds are not washed away in rain or overflowing water or floods.

2. Pond preparation:

If stocking is planned during the monsoon, wet pond preparation method is recommended.
Flushing the pond bottom with water through powerful hoses and dragging the pond bottom manually with wooden planks to remove bottom sediments.

- Apply agriculture lime (calcium carbonate) at 2000 kg/ha to pond bottom before pond filling.
- In case the pond was in earlier crop affected with EHP then application of calcium oxide at 4000-6000 kg/ ha to increase pH of soil and kill the EHP carriers is essential.
- 3. Reservoir and water treatment: The pond shall be filled with water after completion of drying, manuring, liming of pond bottom.
- If using creek or seawater, then it shall be treated with 60% active chlorine (bleaching powder) at 300 kg/ha or if 30% active chlorine at 600 kg/ha.
- In case of bore water apply 10 ppm chlorine.

The chlorine in any form shall be applied after 72 hours of water filling to allow any spores to germinate and

larvae shall be killed in the water after treatment. After chlorination, water should be left for dichlorination for 72 hours. In shrimp farming 20 to 30% of the area or ponds shall be allocated as reservoir to maintain good supply of treated water.

4. Strengthen biosecurity:
The biosecurity of the farm mainly crab fencing, bird fencing and killing of any crabs inside the pond dikes or bottom are necessary to prevent horizontal transmission of diseases.

5. Water quality maintenance:

- The rainwater is acidic and less dense in nature, which makes it float in the top layers of water column of pond water which is normally saline and dense. Hence top water draining, continuous running of aerators to mix the water along with oxygen and application of lime 40-60 kg/ha helps to maintain temperature, salinity, oxygen and pH of the pond water during raining periods.
- Application of AquaCare Mineral Balance which provides complete mineral solution to shrimp, after soaking at 10 to 15 kg/acre during the rainy period. It provides good osmoregulation to shrimp in these fluctuating periods of salinity.
- Temperature tends to become low on continuous cloudy, rainy days, hence operate aerators to manage temperature.
- Increase in suspended solids due to erosion of soil particles along with aeration will cause plankton crashes and water becomes turbid in rainy situations. Hence the application of lime, magnesium, and potassium are essential for pond water.

6. Regulation of water depth:

The water level may increase during incessant rains and there is always a chance of an overflow of pond water in some low-lying areas. If such potential danger is there then the surface water shall be periodically removed through drainpipes on the top portion of

the bund but many shrimp ponds do not have a bottom and top outlet nowadays, putting their culture at risk.

7. Feed Management:

Low temperature situation results in low metabolic rate in shrimps causing low digestion rate taking more time for digestion. Hence reduce feeding during rainy days. Mixing probiotics like **Santron** in feed helps to improve feeding.

8. Improving shrimp immunity:

- Providing Relaxx at 4 g/kg feed to improve immunity should be done to prevent outbreak of diseases.
- Probiotic applications in water can be made on sunny days only as it will demand more oxygen for bacteria, ultimately decreasing DO levels in ponds.
- Daily observation of shrimp for health conditions via check tray observation is essential.
- Prevent usage of chemicals in pond

water during rainy and cloudy days as it would cause further crash of plankton and DO problems.

9. Disease outbreak situation:

If there are any severe outbreaks of diseases like white spot virus then it's always better to harvest the shrimp otherwise mass mortality may occur during rainy season. In the case of Monodon farms during rainy season black or brown gill problems of choked gills will occur due to fungus and hence proper maintenance of pond bottom is essential.

Summary:

While monsoons are unavoidable, their effect on shrimp farming can be greatly lessened with proper planning and timely actions. By strengthening infrastructure, maintaining water quality, adjusting management practices, and focusing on animal health, Indian shrimp farmers can successfully handle the challenges of the monsoon and achieve stable, productive farming results.

AVAILABLE FROM OUR READY STOCKS

AVAILABLE FROM OUR READY STOCKS:

- SPIRULINA POWDER SPRAY DRIED, CHOLESTROL
- YUCCA SCHIDEGERA 80% & 30%
- SODIUM PERBORATE MONO, SODIUM PER CARBONATE,
 CALCIUM, PEROXIDE, TRIPLE SALT, HYDROGEN PEROXIDE, etc.
- BKC 50%, GLUTRALDEHYDE 50%, FORMAL DEHYDE 37%, CETRAMIDE SOLUTION, PROPIONIC ACID etc.
- IODINE, POTASSIUM IODIDE, EMULSIFIER
- FERROUS SULPHATE, MANGANESE SULPHATE, MAGNESIUM, SULPHATE, ZINC SULPHATE, COPPER SULPHATE, COBALT SULPHATE, ZINC OXIDE, MAGNESIUM OXIDE, SODIUM SELENATE, AMMONIUM, MOLYBDATE, CHROMIUM etc. FLAVOURS, COLOURS, VITAMINS
- PROBIOTICS & ENZYMES
- PEPTONE, BEEF, BILE, MALT, PROTEIN, LIVER & YEAST EXTRACTS
- STARCH, DEXTROSE, DCP, TALC, KAOLIN, TSP, CALCIUM & OTHER BASE MATERIALS
- CHARCOAL, VITAMIN C, CALCIUM PROPIONATE, EDTA, CMC, GELATIN, GENTION VIOLET, MALCHITE GREEN.

Kindly contact for any requirements in Aqua Culture, Veterinary and Poultry Industry.

NIHAL TRADERS PVT LTD

3-3-66, Flat no. 103, Sikhara Heights, Besides Manjira Hotel, Chappal Bazar, Hyderabad - 27 (A.P) Ph: 040-24656968, 24746534, 24650253 Tele Fax: 040-24658097; Mobile: 9848040025 Email: nihaltraders@yahoo.com; www.nihaltraders.com

Hengrun HR Series Extruder

Suitable for all kinds of floating & sinking aquatic feed
The screw permutation is adjustable to fit different formulation
Advanced automatic touch screen control system

Model	HR165	HR118X2	HR145X2	HR168X2
Capacity(t/h)	3-5	3-6	6:10	
Туре	Single-screw	Twin-screw	Twin-screw	Twinescov

Moisture evenness≤1.5%

Use only one-third power compared to other competitors.

ZHANJIANG HENGRUN MACHINERY CO., LTD

Shapo Industrial Zone, Suixi, Zhanjiang, Guangdong,

China (524300)

Email: COLEPANG0614@163.COM/HRSAML@163.COM

Tel: +86 759 7770818 Mobile: +0086-137-2691-0838(WhatsApp Accessible)

42nd Edition

Aquaculture Expo 2025

19 - 20 November 2025


Venue: Hotel Mirasol Resort, Daman - Gujarat, India

An Exhibition & Experts - Farmers Interaction Meet on Aquaculture Sector to Update Knowledge and for Better Business Opportunities

LAYOUT OF STALLS

Note: Some stalls position may change from the layout during erection of stalls

Saf Mannan Predictable performance

For more info, please contact:

phileo-lesaffre.com

Aqua International

read quality magazine in India with the largest readership. Aqua International is known as the most trusted and reliable source of media / information on aquaculture. Stakeholders of all segments of Aquaculture sector read this magazine regularly.

Advertise in **Aqua International**

English Monthly

English monthly on Aquaculture sector since 1993

Aqua International

www.aquainternational.in

SCAN QR CODE

and pay towards Advertisement charges to Aqua International, English monthly

Payment may also be sent by online transfer